首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We study the self-assembly of symmetric star-like block copolymers (A(x))(y)(B(x))(y)C in dilute solution by using Brownian dynamics simulations. In the star-like block copolymer, incompatible A and B components are both solvophobic, and connected to the center bead C of the polymer. Therefore, this star-like block copolymer can be taken as a representative of soft and deformable Janus particles. In our Brownian dynamics simulations, these "soft Janus particles" are found to self-assemble into worm-like lamellar structures, loose aggregates and so on. By systematically varying solvent conditions and temperature, we build up the phase diagram to illustrate the effects of polymer structure and temperature on the aggregate structures. At lower temperatures, we can observe large worm-like lamellar aggregates. Upon increasing the temperature, some block copolymers detach from the aggregate; this phenomenon is especially sensitive for the polymers with less arms. The aggregate structure will be quite disordered when the temperature is high. The incompatibility between the two parts in the star-like block copolymer also affects the self-assembled structures. We find that the worm-like structure is longer and narrower as the incompatibility between the two parts is stronger.  相似文献   

2.
任春来 《高分子科学》2012,30(2):164-172
Combining self-consistent-field theory and density-functional theory,we systematically study the deformation of copolymer micelles induced by the presence of amphiphilic dimer particles.Due to the amphiphilic nature,dimer particles tend to accumulate onto the interface of the copolymer micelle.With increasing concentration of the symmetric dimer particles,which are made of two identical spherical particles,the micelle deforms from the initial sphere to ellipse,dumbbell, and finally separates into two micelles.Furthermore,asymmetric dimer particles,composed by two particles with different sizes,are considered to investigate the influence of geometry of dimer particles on the deformation of the micelle.It is found that the micelle inclines to deform into dumbbell due to the additional curvature originating in the gathering of asymmetric dimer particles onto the interface of the micelle.The present study on the deformation of micelles is useful to understand the possible shape variation in the course of cell division/fusion.  相似文献   

3.
The behavior of block copolymers at various interfaces is studied by transmission electron microscopy and neutron reflection. A thin film of a symmetric diblock copolymer of styrene and methyl methacrylate forms layer structures when in contact with air and a random copolymer of styrene and acrylonitrile containing 35 wt% acrylonitrile. When the random copolymer has an acrylonitrile content of 25 wt%, a competition between layer formation and diffusion of disordered micelles takes place. Driving force for these processes are different interfacial tensions and a changing miscibility behavior as a function of acrylonitrile contents of the random copolymers. The ordering behavior of a symmetric diblock copolymer of deuterated styrene and isoprene in contact with poly(3,5-dimethyl phenylene ether) is studied by neutron reflection. Polystyrene-block-poly(ethene-co-but-1-ene)-block-polystyrene with cylindrical PS microdomains shows an interfacial phase transition to lamellae near to the interface with different polymers. The morphological studies are in agreement with adhesion data obtained by peel tests on different bilayer specimens.  相似文献   

4.
The aim of the present review is to show how the phenomena of block copolymer self-assembly and interactions of ionic (or ionizable) groups in polymer systems can be combined to produce materials with versatile and unique behavior. In our discussion, we consider two classes of tandem interactions. First, block copolymers containing short ionic blocks and long nonionic blocks are investigated in organic media. In systems of this type, block copolymer self-assembly and short-range electrostatic interactions act in tandem, forming regular and highly-stable spherical structures. Next, we consider ionic (or ionizable) block copolymers dissolved in aqueous media. In this case, block copolymer self-assembly acts in tandem with the hydrophilic nature of the soluble blocks, resulting in a wide range of unique morphologies.  相似文献   

5.
嵌段共聚物有着丰富的相行为,在本体中会发生微相分离形成球形、柱形、双连续形和层状结构.当嵌段共聚物被限制在一定的空间几何中且空间几何特征尺寸与嵌段共聚物的平衡周期相近时,自组装过程会受到强烈的影响而形成与本体不同的自组装结构.本文从实验研究方面总结了限制因素和边界条件对嵌段共聚物受限自组装过程的影响,并指出了当前存在的一些问题以及今后的发展方向.  相似文献   

6.
利用耗散粒子动力学模拟方法, 研究了杂臂星型嵌段共聚物Am(Bn)2在溶液中自组装形成囊泡的行为. 主要分析了自组装过程、亲水分枝和疏水分枝的长度及分子构型对组装结构的影响. 结果表明, 杂臂星型聚合物在溶液中会自组装形成碟状胶束, 之后弯曲闭合形成囊泡. 当亲水部分的分枝较短时, 易于形成囊泡结构; 在可形成囊泡结构的条件下, 双分子层囊泡膜的厚度随分枝长度的增加而增加. 与构成相近的线型嵌段共聚物相比, 杂臂星型嵌段共聚物更易形成囊泡结构, 且形成的囊泡结构较薄.  相似文献   

7.
ABCA tetrablock copolymers offer new opportunities for design of materials with novel structures. Using real-space self-consistent field theory and simulation, we systematically examined the self-assembly behavior of linear ABCA tetrablock copolymers in a 2D space. The simulation was carried out under conditions of symmetrical compositions and interactions. We focus on the influence of chain length ratio of block A and interactions between block A and other blocks B and C on the self-assembly behavior of the copolymer system. The simulation results show that most of the structures self-assembled by the ABCA tetrablock copolymers are centrosymmetric, such as diblock-like lamella phase, two kinds of lamellae with beads at interface, two kinds of hierarchical lamella phase, hexagonal honeycomb-like phase, lamella phase with mixed BC and hexagonal spheres with mixed BC. Furthermore, we find that a novel noncentrosymmetric Janus spheres can be obtained when the interaction between blocks B and C is strong, whereas a noncentrosymmetric lamella phase was obtained at weak interaction between blocks B and C. Phase diagrams for the ABCA tetrablock copolymers with different interaction strength between blocks B and C are constructed by comparing free energies of candidate ordered structures. In addition, studies on the metastable behavior of the system reveal that enthalpy plays an important role in the metastable behavior of the ABCA tetrablock copolymer system. Our work can provide useful guide for structure control of such kind of tetrablock copolymers in experiments.  相似文献   

8.
The self-assembly of triblock copolymers of poly(ethylene oxide-b-methyl methacrylate-b-styrene) (PEO-b-PMMA-b-PS), where PS is the major component and PMMA and PEO are minor components, provides a robust route to highly ordered, nanoporous arrays with cylindrical pores of 10-15 nm that show promise in block copolymer lithography. These ABC triblock copolymers were synthesized by controlled living radical polymerization, and after solvent annealing, thin films showing defect-free cylindrical microdomains were obtained. The key to the successful generation of highly regular, porous thin films is the use of PMMA as a photodegradable mid-block which leads to nanoporous structures with an unprecedented degree of lateral order. The power of using a triblock copolymer when compared to a traditional diblock copolymer is evidenced by the ability to exploit and combine the advantages of two separate diblock copolymer systems, the high degree of lateral ordering inherent in PS-b-PEO diblocks plus the facile degradability of PS-b-PMMA diblock copolymer systems, while negating the corresponding disadvantages, poor degradability in PS-b-PEO systems and no long-range order for PS-b-PMMA diblocks.  相似文献   

9.
We describe the self-assembly of A-B-A triblock copolymers in thin films composed of a soft polydimethylsiloxane (PDMS) central block (B) and two polypeptidic (A) blocks, poly(γ-benzyl)-l-glutamate (PBLG). The PBLG segment exhibits depending on the chain length two distinct secondary conformations either a β-sheet or a α-helical conformation. The direct relationship between the surface morphology and the secondary conformation of the polypeptide segment has been evidenced by atomic force microscopy. For chain lengths below 20 U the polypeptide segments adopt preferentially a β-sheet secondary structure and the triblock copolymer self-assembled in fibers. Moreover, the fiber diameters increased with the chain length of the triblock copolymer. For chain lengths above 20, the α-helical structure is stabilized and a lamellar morphology is formed driven by rod-rod interactions in spite of the very asymmetric composition of the triblock copolymer. However, decreasing the film thickness from 25 to 8 nm, i.e., below the L/2 and due to the preferential attraction of the polypeptide block for the hydrophilic substrate employed, instead of a lamellar morphology a rod-like morphology could be found. Thus, the use of hybrid block copolymer containing polypeptides with particular secondary structures offers novel alternatives to control the self-assembly in thin films compared to traditional amorphous block copolymers.  相似文献   

10.
自组装是分子间通过非共价键相互作用自发组合形成的一类结构明确、稳定,同时具有某种特定功能或性能的分子聚集体或超分子结构的现象。利用共聚物自组装技术可以制备高度有序介观形貌的功能材料,这些材料有望在生物医学、药物释放、智能材料等领域得到广泛的应用。研究表明,不同结构的共聚物的自组装行为和功能一般不同,同时环境条件,如温度、pH值等也对共聚物自组装行为有很大影响。本文从共聚物结构及外部环境条件两个方面综述了近几年来共聚物的自组装行为规律,并分析了相关自组装结构应用的研究进展。  相似文献   

11.
Controlled/"living" polymerizations and tandem polymerization methodologies offer enticing opportunities to enchain a wide variety of monomers into new, functional block copolymer materials with unusual physical properties. However, the use of these synthetic methods often introduces nontrivial molecular weight polydispersities, a type of chain length heterogeneity, into one or more of the copolymer blocks. While the self-assembly behavior of monodisperse AB diblock and ABA triblock copolymers is both experimentally and theoretically well understood, the effects of broadening the copolymer molecular weight distribution on block copolymer phase behavior are less well-explored. We report the melt-phase self-assembly behavior of SBS triblock copolymers (S = poly(styrene) and B = poly(1,4-butadiene)) comprised of a broad polydispersity B block (M(w)/M(n) = 1.73-2.00) flanked by relatively narrow dispersity S blocks (M(w)/M(n) = 1.09-1.36), in order to identify the effects of chain length heterogeneity on block copolymer self-assembly. Based on synchrotron small-angle X-ray scattering and transmission electron microscopy analyses of seventeen SBS triblock copolymers with poly(1,4-butadiene) volume fractions 0.27 ≤ f(B) ≤ 0.82, we demonstrate that polydisperse SBS triblock copolymers self-assemble into periodic structures with unexpectedly enhanced stabilities that greatly exceed those of equivalent monodisperse copolymers. The unprecedented stabilities of these polydisperse microphase separated melts are discussed in the context of a complete morphology diagram for this system, which demonstrates that narrow dispersity copolymers are not required for periodic nanoscale assembly.  相似文献   

12.
We perform molecular simulations to study the self-assembly of block copolymer tethered cubic nanoparticles. Minimal models of the tethered nanoscale building blocks (NBBs) are utilized to explore the structures arising from self-assembly. We demonstrate that attaching a rigid nanocube to a diblock copolymer affects the typical equilibrium morphologies exhibited by the pure copolymer. Lamellar and cylindrical phases are observed in both systems but not at the corresponding relative copolymer tether block fractions. The effect of nanoparticle geometry on phase behavior is investigated by comparing the self-assembled structures formed by the tethered NBBs with those of their linear ABC triblock copolymer counterparts. The tethered nanocubes exhibit the conventional triblock copolymer lamellar and cylindrical phases when the repulsive interactions between different blocks are symmetric. The rigid and bulky nature of the cube induces interfacial curvature in the tethered NBB phases compared to their linear ABC triblock copolymer counterparts. We compare our results with those structures obtained from ABC diblock copolymer tethered nanospheres to further elucidate the role of cubic nanoparticle geometry on self-assembly.  相似文献   

13.
We have used small-angle X-ray scattering and calorimetric methods to investigate the temperature-dependent phase behavior of ternary systems of phospholipid (DMPC), amphiphilic PEO-PPO-PEO block copolymer (Pluronics P85), and water. It is shown that a relatively small amount of block copolymers ( approximately 3 wt %) results in a lamellar-to-cubic phase transition. Still, both the bilayer-characteristic main transition, associated with chain melting, and the pretransition, associated with in-plane modulations, are preserved for copolymer concentrations up to 50-70 wt %, indicating the preservation of a bilayer type of lipid organization also within the cubic phase. The main transition splits up into two transitions upon the addition of copolymers, one resembling the high cooperativity of the main transition and one broad transition which may reflect complex formation with the copolymers. Parallel studies incorporating poly(ethylene glycol) into the DMPC multilamellar vesicles do not give analogous structural changes. It is concluded that the major effect on the molecular scale of adding PEO-PPO-PEO block copolymers is not only due to the hydration of the membrane but also due to the incorporation of the PPO block into the bilayer structure.  相似文献   

14.
The properties of amphiphilic block copolymer membranes can be tailored within a wide range of physical parameters. This makes them promising candidates for the development of new (bio)sensors based on solid-supported biomimetic membranes. Here we investigated the interfacial adsorption of polyelectrolyte vesicles on three different model substrates to find the optimum conditions for formation of planar membranes. The polymer vesicles were made from amphiphilic ABA triblock copolymers with short, positively charged poly(2,2-dimethylaminoethyl methacrylate) (PDMAEMA) end blocks and a hydrophobic poly( n-butyl methacrylate) (PBMA) middle block. We observed reorganization of the amphiphilic copolymer chains from vesicular structures into a 1.5+/-0.04 nm thick layer on the hydrophobic HOPG surface. However, this film starts disrupting and dewetting upon drying. In contrast, adsorption of the vesicles on the negatively charged SiO2 and mica substrates induced vesicle fusion and formation of planar, supported block copolymer films. This process seems to be controlled by the surface charge density of the substrate and concentration of the block copolymers in solution. The thickness of the copolymer membrane on mica was comparable to the thickness of phospholipid bilayers.  相似文献   

15.
Conjugated rod-coil diblock copolymers self-assemble due to a balance of liquid crystalline (rod-rod) and enthalpic (rod-coil) interactions. Previous work has shown that while classical block copolymers self-assemble into a wide variety of nanostructures, when rod-rod interactions dominate self-assembly in rod-coil block copolymers, lamellar structures are preferred. Here, it is demonstrated that other, potentially more useful, nanostructures can be formed when these two interactions are more closely balanced. In particular, hexagonally packed polylactide (PLA) cylinders embedded in a semiconducting poly(3-alkylthiophene) (P3AT) matrix can be formed. This microstructure has been long-sought as it provides an opportunity to incorporate additional functionalities into a majority phase nanostructured conjugated polymer, for example in organic photovoltaic applications. Previous efforts to generate this phase in polythiophene-based block copolymers have failed due to the high driving force for P3AT crystallization. Here, we demonstrate that careful design of the P3AT moiety allows for a balance between crystallization and microphase separation due to chemical dissimilarity between copolymer blocks. In addition to hexagonally packed cylinders, P3AT-PLA block copolymers form nanostructures with long-range order at all block copolymer compositions. Importantly, the conjugated moiety of the P3AT-PLA block copolymers retains the crystalline packing structure and characteristic high time-of-flight charge transport of the homopolymer polythiophene (μ(h) ~10(-4) cm(2) V(-1) s(-1)) in the confined geometry of the block copolymer domains.  相似文献   

16.
双亲嵌段共聚物自组装特性的计算机模拟   总被引:3,自引:0,他引:3  
双亲嵌段共聚物在不同体系下会自组装成各种形貌的超分子聚集体,是目前人们研究的热点,并在工业领域得到了广泛应用。计算机模拟是研究其自组装特性机理及聚集体结构、动态性质的有效工具。本文对近年来嵌段共聚物自组装特性的热力学模型和动力学模拟的研究进展进行了综述,分析了其中存在的问题并进行了展望。  相似文献   

17.
Typically, the morphologies of the self-assembled nanostructures from block copolymers are limited to spherical micelles, wormlike micelles and vesicles. Now, a new generation of materials with unique shape and structures, cylindrical soft matter particles (tubisomes), are obtained from the hierarchical self-assembly of cyclic peptide-bridged amphiphilic diblock copolymers. The capacity of obtained photo-responsive tubisomes as potential drug carriers is evaluated. The supramolecular tubisomes pave an alternative way for fabricating polymeric tubular structures, and will expand the toolbox for the rational design of functional hierarchical nanostructures.  相似文献   

18.
In this paper, the dynamic assembly of toroidal micelle structures of amphiphilic triblock copolymers in dilute solution has been investigated using dissipative particle dynamics simulations. The amphiphilic molecule is represented by a coarse-grained model, which contains hydrophilic and hydrophobic particles. Some microstructures of complex morphology having toroidal micelles have been observed in the simulations; the toroidal micelle formation is in accordance with the theoretical prediction of the toroidal structure in cylindrical micelle suspensions by Pochan et al. (Science 2004, 306, 94). These findings are very interesting, and these complex morphologies enrich our knowledge of the potential products obtained from the self-assembly of block copolymers.  相似文献   

19.
Using polyelectrolyte block copolymers to tune nanostructure assembly   总被引:2,自引:0,他引:2  
This review presents an overview of the recent developments in polyelectrolyte block copolymer self-assembly, including charged block copolymers and random copolymers as well as polypeptidic block copolymers. Different methods for controlling micellar structures in solution are presented. In addition, the use of polyelectrolyte copolymers as responsive hydrogels, in polyelectrolyte complexes, and in layer-by-layer assemblies will be discussed.  相似文献   

20.
Bisphenol A polycarbonate degrades due to sunlight, humidity and oxygen. In this study two possible techniques to stabilize the polymer were compared, i.e. blending of UV-absorbers (UVAs) into the polymer or using block copolymers based on resorcinol polyarylates. Combination of different analysis techniques shows that the protection by UVAs is not as good as by the resorcinol polyarylate block copolymers. The block copolymer rearranges itself through a photo-Fries rearrangement within hours into a UV-absorbing top layer. Two different block compositions were studied, and the copolymer with the highest concentration of resorcinol polyarylate groups shows the best protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号