首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative permeability of carbon dioxide (CO2) to brine influences the injectivity and plume migration when CO2 is injected in a reservoir for CO2 storage or enhanced oil recovery (EOR) purposes. It is common practice to determine the relative permeability of a fluid by means of laboratory measurements. Two principal approaches are used to obtain a relative permeability data: steady state and unsteady state. Although CO2 has been employed in enhanced oil recovery, not much data can be found in the open literature. The few studies available report wide ranges for CO2 relative permeability in typical sedimentary rocks such as Berea sandstone, dolomite, and others. The experimental setups vary for each study, employing steady and unsteady state approaches, different experimental parameters such as temperature, pressure, rock type, etc. and various interpretation methods. Hence, it is inherently difficult to compare the data and determine the origin of differences. It is evident that more experiments are needed to close this knowledge gap on relative permeability. This article concludes that standards for lab measurements need to be defined a. to establish a reliable CO2-brine relative permeability measurement method that can be repeated under the same conditions in any lab and b. to enable comparison of the data to accurately predict the well injection and fluid migration behavior in the reservoir.  相似文献   

2.
Carbon dioxide (CO2) injection is a well-established method for increasing recovery from oil reservoirs. However, poor sweep efficiency has been reported in many CO2 injection projects due to the high mobility contrast between CO2 and oil and water. Various injection strategies including gravity stable, WAG and SWAG have been suggested and, to some extent, applied in the field to alleviate this problem. An alternative injection strategy is carbonated water injection (CWI). In CWI, CO2 is delivered to a much larger part of the reservoir compared to direct CO2 injection due to a much improved sweep efficiency. In CWI, CO2 is used efficiently and much less CO2 is required compared to conventional CO2 flooding, and hence the process is particularly attractive for reservoirs with limited access to large quantities of CO2 (offshore reservoirs or reservoirs far away from inexpensive natural CO2 resources). This article describes the results of a pore-scale study of the process of CWI by performing high-pressure visualisation flow experiments. The experimental results show that CWI, compared to unadulterated (conventional) water injection, improves oil recovery as both a secondary (before water flooding) and a tertiary (after water flooding) recovery method. The mechanisms of oil recovery by CWI include oil swelling, coalescence of the isolated oil ganglia and flow diversion due to flow restriction in some of the pores as a result of oil swelling and the resultant fluid redistribution. In this article the potential benefit of a subsequent depressurisation period on oil recovery after the CWI period is also investigated.  相似文献   

3.
In this study, we systematically investigate the effect of core-scale heterogeneity on the performance of miscible CO2 flooding under various injection modes (secondary and tertiary). Manufactured heterogeneous core plugs are used to simulate vertical and horizontal heterogeneity that may be present in a reservoir. A sample with vertical heterogeneity (i.e. a layered sample) is constructed using two axially cut half plugs each with a distinctly different permeability value. In these samples, the permeability ratio (PR) defines the ratio between the permeabilities of adjacent half plugs. Horizontal heterogeneity (i.e. a composite sample) is introduced by stacking two or three short cylindrical core segments each with a different permeability value. Our special sample construction techniques have also enabled us to investigate the effect of permeability ratio and crossflow in layered samples and axial arrangement of core segments in composite samples on the ultimate recovery of the floods. Core flooding experiments are conducted with an n-Decane–brine–CO2 system at a pore pressure of 17.2 MPa and a temperature of 343 K. At this temperature, the minimum miscibility pressure of CO2 with n-Decane is 12.6–12.7 MPa so it is expected that at 17.2 MPa CO2 is fully miscible with n-Decane. The results obtained for both the composite and layered samples indicate that CO2 injection would achieve the highest recovery factor (RF) when performed under the secondary mode (e.g. layered: 79.00%, composite: 89.83%) compared with the tertiary mode (e.g. layered: 73.2%, composite: 86.2%). This may be attributed to the effect of water shielding which impedes the access of the injected CO2 to the residual oil under the tertiary injection mode. It is also found that the oil recovery from a layered sample decreases noticeably with an increase in the PR as higher PR makes the displacement more uneven due to CO2 channelling. The RFs of 93.4, 87.89, 77.9 and 69.8% correspond to PRs of 1, 2.5, 5, and 12.5, respectively. In addition, for the layered samples, crossflow was found to have an important role during the recovery process; however, due to excessive channelling, this effect tends to diminish as PR increases. Compared with the layered heterogeneity, the effect of composite heterogeneity on the RF seems to be very subtle as the RF is found to be almost independent from the permeability sequence along the length of a composite sample. This outcome may have been caused by the small diameter of the plugs resulting in invariable 1-D floods.  相似文献   

4.
Carbonated water injection (CWI) is a CO2-augmented water injection strategy that leads to increased oil recovery with added advantage of safe storage of CO2 in oil reservoirs. In CWI, CO2 is used efficiently (compared to conventional CO2 injection) and hence it is particularly attractive for reservoirs with limited access to large quantities of CO2, e.g. offshore reservoirs or reservoirs far from large sources of CO2. We present the results of a series of CWI coreflood experiments using water-wet and mixed-wet Clashach sandstone cores and a reservoir core with light oil (n-decane), refined viscous oil and a stock-tank crude oil. The experiments were carried out to assess the performance of CWI and to quantify the level of additional oil recovery and CO2 storage under various experimental conditions. We show that the ultimate oil recovery by CWI is higher than the conventional water flooding in both secondary and tertiary recovery methods. Oil swelling as a result of CO2 diffusion into the oil and the subsequent oil viscosity reduction and coalescence of the isolated oil ganglia are amongst the main mechanisms of oil recovery by CWI that were observed through the visualisation experiments in high-pressure glass micromodels. There was also evidence of a change in the rock wettability that could also influence the oil recovery. The coreflood test results also reveal that the CWI performance is influenced by oil viscosity, core wettability and the brine salinity. Higher oil recovery was obtained with the mixed-wet core than the water-wet core, with light oil than with the viscous oil and low salinity carbonated brine than high-salinity carbonated brine. At the end of the flooding period, an encouraging amount of the injected CO2 was stored in the brine and the remaining oil in the form of stable dissolved CO2. The experimental results clearly demonstrate the potential of CWI for improving oil recovery as compared with the conventional water flooding (secondary recovery) or as a water-based EOR (enhanced oil recovery) method for watered out reservoirs.  相似文献   

5.
Although there are a number of mathematical modeling studies for carbon dioxide (CO2) injection into aquifer formations, experimental studies are limited and most studies focus on injection into sandstone reservoirs as opposed to carbonate ones. This study presents the results of computerized tomography (CT) monitored laboratory experiments to analyze permeability and porosity changes as well as to characterize relevant chemical reactions associated with injection and storage of CO2 in carbonate formations. CT monitored experiments are designed to model fast near well bore flow and slow reservoir flows. Highly heterogeneous cores drilled from a carbonate aquifer formation located in South East Turkey were used during the experiments. Porosity changes along the core plugs and the corresponding permeability changes are reported for different CO2 injection rates and different salt concentrations of formation water. It was observed that either a permeability increase or a permeability reduction can be obtained. The trend of change in rock properties is very case dependent because it is related to distribution of pores, brine composition and thermodynamic conditions. As the salt concentration decreases, porosity and the permeability decreases are less pronounced. Calcite deposition is mainly influenced by orientation, with horizontal flow resulting in larger calcite deposition compared to vertical flow.  相似文献   

6.
We use a three-dimensional mixed-wet random network model representing Berea sandstone to compute displacement paths and relative permeabilities for water alternating gas (WAG) flooding. First we reproduce cycles of water and gas injection observed in previously published experimental studies. We predict the measured oil, water and gas relative permeabilities accurately. We discuss the hysteresis trends in the water and gas relative permeabilities and compare the behavior of water-wet and oil-wet media. We interpret the results in terms of pore-scale displacements. In water-wet media the water relative permeability is lower during water injection in the presence of gas due to an increase in oil/water capillary pressure that causes a decrease in wetting layer conductance. The gas relative permeability is higher for displacement cycles after first gas injection at high gas saturation due to cooperative pore filling, but lower at low saturation due to trapping. In oil-wet media, the water relative permeability remains low until water-filled elements span the system at which point the relative permeability increases rapidly. The gas relative permeability is lower in the presence of water than oil because it is no longer the most non-wetting phase.  相似文献   

7.
Dissolution of CO2 into brine is an important and favorable trapping mechanism for geologic storage of CO2. There are scenarios, however, where dissolved CO2 may migrate out of the storage reservoir. Under these conditions, CO2 will exsolve from solution during depressurization of the brine, leading to the formation of separate phase CO2. For example, a CO2 sequestration system with a brine-permeable caprock may be favored to allow for pressure relief in the sequestration reservoir. In this case, CO2-rich brine may be transported upwards along a pressure gradient caused by CO2 injection. Here we conduct an experimental study of CO2 exsolution to observe the behavior of exsolved gas under a wide range of depressurization. Exsolution experiments in highly permeable Berea sandstones and low permeability Mount Simon sandstones are presented. Using X-ray CT scanning, the evolution of gas phase CO2 and its spatial distribution is observed. In addition, we measure relative permeability for exsolved CO2 and water in sandstone rocks based on mass balances and continuous observation of the pressure drop across the core from 12.41 to 2.76 MPa. The results show that the minimum CO2 saturation at which the exsolved CO2 phase mobilization occurs is from 11.7 to 15.5%. Exsolved CO2 is distributed uniformly in homogeneous rock samples with no statistical correlation between porosity and CO2 saturation observed. No gravitational redistribution of exsolved CO2 was observed after depressurization, even in the high permeability core. Significant differences exist between the exsolved CO2 and water relative permeabilities, compared to relative permeabilities derived from steady-state drainage relative permeability measurements in the same cores. Specifically, very low CO2 and water relative permeabilities are measured in the exsolution experiments, even when the CO2 saturation is as high as 40%. The large relative permeability reduction in both the water and CO2 phases is hypothesized to result from the presence of disconnected gas bubbles in this two-phase flow system. This feature is also thought to be favorable for storage security after CO2 injection.  相似文献   

8.

Three-phase flow in porous media is encountered in many applications including subsurface carbon dioxide storage, enhanced oil recovery, groundwater remediation and the design of microfluidic devices. However, the pore-scale physics that controls three-phase flow under capillary dominated conditions is still not fully understood. Recent advances in three-dimensional pore-scale imaging have provided new insights into three-phase flow. Based on these findings, this paper describes the key pore-scale processes that control flow and trapping in a three-phase system, namely wettability order, spreading and wetting layers, and double/multiple displacement events. We show that in a porous medium containing water, oil and gas, the behaviour is controlled by wettability, which can either be water-wet, weakly oil-wet or strongly oil-wet, and by gas–oil miscibility. We provide evidence that, for the same wettability state, the three-phase pore-scale events are different under near-miscible conditions—where the gas–oil interfacial tension is ≤?1 mN/m—compared to immiscible conditions. In a water-wet system, at immiscible conditions, water is the most-wetting phase residing in the corners of the pore space, gas is the most non-wetting phase occupying the centres, while oil is the intermediate-wet phase spreading in layers sandwiched between water and gas. This fluid configuration allows for double capillary trapping, which can result in more gas trapping than for two-phase flow. At near-miscible conditions, oil and gas appear to become neutrally wetting to each other, preventing oil from spreading in layers; instead, gas and oil compete to occupy the centre of the larger pores, while water remains connected in wetting layers in the corners. This allows for the rapid production of oil since it is no longer confined to movement in thin layers. In a weakly oil-wet system, at immiscible conditions, the wettability order is oil–water–gas, from most to least wetting, promoting capillary trapping of gas in the pore centres by oil and water during water-alternating-gas injection. This wettability order is altered under near-miscible conditions as gas becomes the intermediate-wet phase, spreading in layers between water in the centres and oil in the corners. This fluid configuration allows for a high oil recovery factor while restricting gas flow in the reservoir. Moreover, we show evidence of the predicted, but hitherto not reported, wettability order in strongly oil-wet systems at immiscible conditions, oil–gas–water, from most to least wetting. At these conditions, gas progresses through the pore space in disconnected clusters by double and multiple displacements; therefore, the injection of large amounts of water to disconnect the gas phase is unnecessary. We place the analysis in a practical context by discussing implications for carbon dioxide storage combined with enhanced oil recovery before suggesting topics for future work.

  相似文献   

9.

Capillary dominated flow or imbibition—whether spontaneous or forced—is an important physical phenomena in understanding the behavior of naturally fractured water-driven reservoirs (NFR’s). When the water flows through the fractures, it imbibes into the matrix and pushes the oil out of the pores due to the difference in the capillary pressure. In this paper, we focus on modeling and quantifying the oil recovered from NFR’s through the imbibition processes using a novel fully implicit mimetic finite difference (MFD) approach coupled with discrete fracture/discrete matrix (DFDM) technique. The investigation is carried out in the light of different wetting states of the porous media (i.e., varying capillary pressure curves) and a full tensor representation of the permeability. The produced results proved the MFD to be robust in preserving the physics of the problem, and accurately mapping the flow path in the investigated domains. The wetting state of the rock affects greatly the oil recovery factors along with the orientation of the fractures and the principal direction of the permeability tensor. We can conclude that our novel MFD method can handle the fluid flow problems in discrete-fractured reservoirs. Future works will be focused on the extension of MFD method to more complex multi-physics simulations.

  相似文献   

10.
A set of scaling criteria of a polymer flooding reservoir is derived from the governing equations, which involve gravity and capillary force, compressibility of water, oil, and rock, non-Newtonian behavior of the polymer solution, absorption, dispersion, and diffusion, etc. A numerical approach to quantify the dominance degree of each dimensionless parameter is proposed.With this approach, the sensitivity factor of each dimensionless parameter is evaluated. The results show that in polymer flooding, the order of the sensitivity factor ranges from 10−5 to 100 and the dominant dimensionless parameters are generally the ratio of the oil permeability under the condition of the irreducible water saturation to water permeability under the condition of residual oil saturation, density, and viscosity ratios between water and oil, the reduced initial oleic phase saturation and the shear rate exponent of the polymer solution. It is also revealed that the dominant dimensionless parameters may be different from case to case. The effect of some physical variables, such as oil viscosity, injection rate, and permeability, on the dominance degree of the dimensionless parameters is analyzed and the dominant ones are determined for different cases.  相似文献   

11.
A model of a porous medium consisting of randomly branching conical pores is used to investigate the quasistatic displacement of gas by a wetting liquid without application of an external pressure. Allowance is made for the circumstance that in the capillary process all the pores have at least one-sided permeability for the liquid phase. An expression is obtained that relates the residual gas saturation to the parameters which characterize the structure of the pores and the wetting properties of the system. Two new characteristics of the pore space are introduced — the branching parameter and the opening angle of the pores — and the influence of these parameters on the residual saturation is investigated. It is shown that for individual classes of natural media the residual gas saturation depends only on the porosity and the contact angle of wetting.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 128–133, September–October, 1981.  相似文献   

12.
It is well known that the oil recovery is affected by wettability of porous medium; however, the role of nanoparticles on wettability alteration of medium surfaces has remained a topic of debate in the literature. Furthermore, there is a little information of the way dispersed silica nanoparticles affect the oil recovery efficiency during polymer flooding, especially, when heavy oil is used. In this study, a series of injection experiments were performed in a five-spot glass micromodel after saturation with the heavy oil. Polyacrylamide solution and dispersed silica nanoparticles in polyacrylamide (DSNP) solution were used as injected fluids. The oil recovery as well as fluid distribution in the pores and throats was measured with analysis of continuously provided pictures during the experiments. Sessile drop method was used for measuring the contact angles of the glass surface at different states of wettability after coating by heavy oil, distilled water, dispersed silica nanoparticles in water (DSNW), polyacrylamide solution, and DSNP solution. The results showed that the silica nanoparticles caused enhanced oil recovery during polymer flooding by a factor of 10%. The distribution of DSNP solution during flooding tests in pores and throats showed strong water-wetting of the medium after flooding with this solution. The results of sessile drop experiments showed that coating with heavy oil, could make an oil-wet surface. Coating with distilled water and polymer solution could partially alter the wettability of surface to water-wet and coating with DSNW and DSNP could make a strongly water-wet surface.  相似文献   

13.
Models of the residual oil saturation distribution are proposed for linear, axisymmetric, and general flows. The steady displacing fluid flow model makes it possible to find equilibrium residual oil saturation distributions corresponding to given flow regimes by treating the porous medium with capillary-trapped oil as a medium with permeability that depends on the displacement conditions. The dynamics of the mobilized globules of the residual oil are excluded from consideration. The simulation results indicate that the residual oil saturation distribution after stimulation of the wash-out zone by means of enhanced oil recovery techniques is generally essentially nonuniform. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 98–104, May–June, 2000.  相似文献   

14.
Water imbibition during the waterflooding process of oil production only sweeps part of the oil present. After water disrupts the oil continuity, most oil blobs are trapped in porous rock by capillary forces. Developing an efficient waterflooding scheme is a difficult task; therefore, an understanding of the oil trapping mechanism in porous rock is necessary from a microscopic viewpoint. The development of microfocused X-ray CT scanner technology enables the three-dimensional visualization of multiphase phenomena in a pore-scale. We scanned packed glass beads filled with a nonwetting phase (NWP) and injected wetting phase (WP) in upward and downward injections to determine the microscopic mechanism of immiscible displacement in porous media and the effects of buoyancy forces. We observed the imbibition phenomena for small capillary numbers to understand the spontaneous imbibition mechanism in oil recovery. This study is one of the first attempts to use a microfocused X-ray CT scanner for observing the imbibition and trapping mechanisms. The trapping mechanism in spontaneous imbibition is determined by the pore configuration causing imbibition speed differences in each channel; these differences can disrupt the oil continuity. Gravity plays an important role in spontaneous imbibition. In upward injection, the WP flows evenly and oil is trapped in single or small clusters of pores. In downward injection, the fingering phenomena determine the amount of trapped oil, which is usually in a network scale. Water breakthrough causes dramatic decrease in the oil extraction rate, resulting in lower oil production efficiency.  相似文献   

15.
In three-phase flow, the macroscopic constitutive relations of capillary pressure and relative permeability as functions of saturation depend in a complex manner on the underlying pore occupancies. These three-phase pore occupancies depend in turn on the interfacial tensions, the pore sizes and the degree of wettability of the pores, as characterised by the cosines of the oil–water contact angles. In this work, a quasi-probabilistic approach is developed to determine three-phase pore occupancies in media where the degree of wettability varies from pore to pore. Given a set of fluid and rock properties, a simple but novel graphical representation is given of the sizes and oil–water contact angles underlying three-phase occupancies for every allowed combination of capillary pressures. The actual phase occupancies are then computed using the contact angle probability density function. Since a completely accessible porous medium is studied, saturations, capillary pressures, and relative permeabilities are uniquely related to the pore occupancies. In empirical models of three-phase relative permeability it is of central importance whether a phase relative permeability depends only on its own saturation and how this relates to the corresponding two-phase relative permeability (if at all). The new graphical representation of pore sizes and wettabilities clearly distinguishes all three-phase pore occupancies with respect to these saturation-dependencies. Different types of saturation-dependencies may occur, which are shown to appear in ternary saturation diagrams of iso-relative permeability curves as well, thus guiding empirical approaches. However, for many saturation combinations three-phase and two-phase relative permeabilities can not be linked. In view of the latter, the present model has been used to demonstrate an approach for three-phase flow modelling on the basis of the underlying pore-scale processes, in which three-phase relative permeabilities are computed only along the actual flow paths. This process-based approach is used to predict an efficient strategy for oil recovery by simultaneous water-alternating-gas (SWAG) injection.  相似文献   

16.
Three-phase flow is a key process occurring in subsurface reservoirs, for example, during $\text{ CO }_2$ sequestration and enhanced oil recovery techniques such as water alternating gas (WAG) injection. Predicting three-phase flow processes, for example, the increase in oil recovery during WAG, requires a sound understanding of the fundamental flow physics in water- to oil-wet rocks to derive physically robust flow functions, i.e. relative permeability and capillary pressure. In this study, we use pore-network modelling, a reliable and physically based simulation tool, to predict the flow functions. We have developed a new pore-scale network model for rocks with variable wettability, from water- to oil-wet. It comprises a constrained set of parameters that mimic the wetting state of a reservoir. Unlike other models, it combines three main features: (1) A novel thermodynamic criterion for formation and collapse of oil layers. The new model hence captures wetting film and layer flow of oil adequately, which affects the oil relative permeability at low oil saturation and leads to accurate prediction of residual oil. (2) Multiple displacement chains, where injection of one phase at the inlet triggers a chain of interface displacements throughout the network. This allows for the accurate modelling of the mobilisation of many disconnected phase clusters that arise, in particular, during higher order WAG floods. (3) The model takes realistic 3D pore-networks extracted from pore-space reconstruction methods and CT images as input, preserving both topology and pore shape of the sample. For water-wet systems, we have validated our model with available experimental data from core floods. For oil-wet systems, we validated our network model by comparing 2D network simulations with published data from WAG floods in oil-wet micromodels. This demonstrates the importance of film and layer flow for the continuity of the various phases during subsequent WAG cycles and for the residual oil saturations. A sensitivity analysis has been carried out with the full 3D model to predict three-phase relative permeabilities and residual oil saturations for WAG cycles under various wetting conditions with different flood end-points.  相似文献   

17.
During CO2 injection into brine aquifers-containing residual and/or dissolved CH4, three distinct regions develop: (1) a single-phase, dry-out region around the well-bore filled with pure supercritical CO2; (2) a two-phase, two-component system containing CO2 and brine; and (3) a two-phase, two-component system containing CH4, and brine. This article extends an existing analytical solution, for pressure buildup during CO2 injection into brine aquifers, by incorporating dissolved and/or residual CH4. In this way, the solution additionally accounts for partial miscibility of the CO2?CCH4?Cbrine system and the relative permeability hysteresis associated with historic imbibition of brine and current drainage due to CO2 injection and CH4 bank development. Comparison of the analytical solution results with commercial simulator, CMG-GEM, shows excellent agreement among a range of different scenarios. The presence of residual CH4 in a brine aquifer summons two competing phenomena, (1) reduction in relative permeability (phase interference), which increases pressure buildup by reducing total mobility, and (2) increase in bulk compressibility which decreases pressure buildup of the system. If initial CH4 is dissolved (no free CH4), these effects are not as important as they are in the residual gas scenario. Relative permeability hysteresis increased the CH4 bank length (compared to non-hysteretic relative permeability), which led to further reduction in pressure buildup. The nature of relative permeability functions controls whether residual CH4 is beneficial or disadvantageous to CO2 storage capacity and injectivity in a candid brine aquifer.  相似文献   

18.
Most clastic reservoirs display an intermediate type of wettability. Intermediate wettability covers several local wetting configurations like fractional wet and mixed-wet where the oil-wet sites could either be in the large or smaller pores. Clastic reservoirs show a large variation in fluid flow properties. A classical invasion–percolation network simulator is used to investigate properties of different intermediate wet situations. Variation in wetting properties like contact angles, process dependent contact angles, contact angle distribution, and fraction of oil wet sites are investigated. The fluid flow properties analysed in particular are residual oil saturation and normalized endpoint relative permeability. Results from network modelling have been compared to reservoir core analysis data. The network models applied are at the capillary limit, while the core flood results are clearly viscous influenced. Even though network modelling does not cover all the physics involved in fluid displacement processes, results show that data from simulations are sufficient to present trends in fluid flow properties which are comparable to experimental data.  相似文献   

19.
This article deals with developing a solution approach, called the non-isothermal negative saturation (NegSat) solution approach. The NegSat solution approach solves efficiently any non-isothermal compositional flow problem that involves phase disappearance, phase appearance, and phase transition. The advantage of the solution approach is that it circumvents using different equations for single-phase and two-phase regions and the ensuing unstable procedure. This paper shows that the NegSat solution approach can also be used for non-isothermal systems. The NegSat solution approach can be implemented efficiently in numerical simulators to tackle modeling issues for mixed CO2–water injection in geothermal reservoirs, thermal recovery processes, and for multicontact miscible and immiscible gas injection in oil reservoirs. We illustrate the approach by way of example to cold mixed CO2–water injection in a 1D geothermal reservoir. The solution is compared with an analytical solution obtained with the wave-curve method (method of characteristics) and shows excellent agreement. A complete set of simulations is carried out, which identifies six bifurcations. The two main bifurcations are (1) when the most downstream compositional wave is replaced by a compositional shock and (2) when an extra Buckley–Leverett rarefaction appears. The plot of the useful energy (exergy) versus the CO2 storage capacity shows a Z-shape. The top horizontal part represents a branch of high exergy recovery/relatively lower storage capacity, whereas the bottom part represents a branch of lower exergy recovery/higher storage capacity.  相似文献   

20.
Foam flow experiments were carried out to study the influence factors such as surfactant concentration, foam quality, injection rate of liquid and gas, permeability of porous media, temperature, and oil saturation on blocking ability and flowing characteristics of steady foams in porous media. Foam blocking mechanisms and flowing characteristics were summarized according to the experimental results and foam migration behavior. The results showed that the pressure distribution of flowing foams was linearly descending in porous media at steady state. The results further showed that the foam size and quality in pores along the sand pack were almost uniform, that is, foam generation and destruction gradually reached dynamic equilibrium at steady state. In porous media, the blocking ability of steady foams increased with the concentration of the foaming agent and the increase in the permeability of porous media, but the blocking ability decreased with the increase in the temperature, the shearing rate, and the oil saturation of the porous media. Foam resistance factor reached maximal value at the foam quality of 85% in porous media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号