首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 757 毫秒
1.
Hot-wire velocity measurements are carried out in a turbulent boundary layer over a rough wall consisting of transverse circular rods, with a ratio of 8 between the spacing (w) of two consecutive rods and the rod height (k). The pressure distribution around the roughness element is used to accurately measure the mean friction velocity (Uτ) and the error in the origin. It is found that Uτ remained practically constant in the streamwise direction suggesting that the boundary layer over this surface is evolving in a self-similar manner. This is further corroborated by the similarity observed at all scales of motion, in the region 0.2y/δ0.6, as reflected in the constancy of Reynolds number (Rλ) based on Taylor’s microscale and the collapse of Kolmogorov normalized velocity spectra at all wavenumbers.A scale-by-scale budget for the second-order structure function (δu)2 (δu=u(x+r)-u(x), where u is the fluctuating streamwise velocity component and r is the longitudinal separation) is carried out to investigate the energy distribution amongst different scales in the boundary layer. It is found that while the small scales are controlled by the viscosity, intermediate scales over which the transfer of energy (or (δu)3) is important are affected by mechanisms induced by the large-scale inhomogeneities in the flow, such as production, advection and turbulent diffusion. For example, there are non-negligible contributions from the large-scale inhomogeneity to the budget at scales of the order of λ, the Taylor microscale, in the region of the boundary layer extending from y/δ=0.2 to 0.6 (δ is the boundary layer thickness).  相似文献   

2.
3.
Two-dimensional electroelastic analyses have been performed theoretically on a transversely isotropic piezoelectric material containing an elliptic hole, subjected to a uniform stress field and a uniform electric displacement field at infinity while the surface of the hole is free of traction and electrically open. Solutions are obtained by using the exact electric boundary condition based on the complex variation method. Explicit solutions for the distributions of the mechanical and electrical components on the rim of the elliptic hole are obtained. An interesting relationship between the stress concentration factor of an elliptic hole (Kt) and that of a circular hole (Ktt=1), Kt=1+Ktt=1-1t, is found in both elastic and piezoelectric materials. It is shown that the electromechanical coupling effect is helpful to reduce the stress concentration. And the influence of the dielectric parameter of the medium inside the hole on the stresses and the concerned stress concentration factor at the surface of the hole is weak in a wide range of the dielectric parameter. Comparisons with available results show good coincidence.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
This paper is a continuation of an earlier paper [P.E. Hancock, Velocity scales in the near-wall layer beneath reattaching turbulent separated and boundary layer flows, Eur. J. Mech. B Fluids 24 (2005) 425–438] in which it is proposed that each Reynolds stress has its own velocity scale. Two of these, uτ and wτ, are directly related by definition to the r.m.s. of the wall-shear-stress fluctuations (τx and τz) in the streamwise and transverse directions. They are also velocity scales for the true dissipation of the turbulent kinetic energy and the Kolmogorov velocity and length scales at the surface. From asymptotic considerations it is shown that the other two scales are related to averages involving instantaneous gradients of wall-shear-stress fluctuations. The measurements, made using pulsed-wire anemometry into the viscous sublayer, show that uτ and wτ are also the velocity scales for the respective streamwise and transverse fourth-order velocity moments, together with the viscous velocity scale (ν/y). Normalised, the fourth-order moments show an inner-layer-like behaviour independent of both position and direction, like that seen in the second-order moments [P.E. Hancock, Velocity scales in the near-wall layer beneath reattaching turbulent separated and boundary layer flows, Eur. J. Mech. B Fluids 24 (2005) 425–438]. However, not surprisingly, the third order moments exhibit an effect of mean shear, seen in the skewing of the probability distributions. Though not measured directly, the measurements imply the behaviour of the averaged products of fluctuations in wall-shear-stress and wall-pressure-gradient (τxp/x¯ and τzp/z¯). Normalised, they also are independent of position and direction. Some of the results presented apply more generally to the near-wall region beneath turbulent flow.  相似文献   

13.
14.
A numerical technique based on the method of singular surfaces has been developed for the computation of wave propagation in solids exhibiting rate-independent elastic-plastic or rate-dependent elastic-viscoplastic behavior. The von Mises yield condition and associated flow rule is taken to represent the rate-independent behavior, while the Perzyna dynamic overstress model is taken to represent the rate-dependent behavior. For 1100-0 Al, a good empirical fit with published experimental data was found to be: J21/2?κ(Wp)=(τ0/γ0)(Wp0/J21/2) where:J2 is the second invariant of the stress deviator;k(Wp) is the static hardening curve;Wp is the plastic work and the parameter (τ0/γ0) = 0 (rate-independent model) or (80)?1 to (70)?1 MPa · s. In the numerical technique, the “connection equations” which provide relations between discontinuities in space and time derivatives lend themselves naturally to finite difference representations. A five-point space-time grid (center point coincident with the instantaneous location of the singular surface) is sufficient for the differenced form of the connection equations and suggests a natural marching scheme for the calculation of all necessary variables at each time step. Supplementing these equations which hold in the interior of the specimen are interface equations which assure continuity in stress and velocity across boundaries which separate materials with dissimilar properties. Application of the technique is made to wave propagation in pure shear for the purpose of comparing numerical predictions with relevant experimental data. The measurements of Duffyet al.[10] which are obtained from the torsional Kolsky apparatus (one dimensional torsional shear wave propagation in a thin-walled tube) were compared with predictions obtained numerically. By using the experimental input pulse history and the constitutive equation reported above, excellent agreement between the predicted and observed histories of reflected and transmitted pulses was obtained when the viscoplastic model was used. Poorer agreement was observed when the rate-independent model (τ00=0) was used. It is concluded that the Perzyna model gives good results for the behavior of 1100-0 Al at high rates of strain.  相似文献   

15.
16.
17.
18.
19.
Theoretical and empirical correlations for duct flow are given for hydrodynamically and thermally developed flow in most of previous studies. However, this is commonly not a realistic inlet configuration for heat exchanger, in which coolant flow generally turns through a serpentine shaped passage before entering heat sinks. Accordingly, an experimental investigation was carried out to determine average heat transfer coefficients in uniformly heated rectangular channel with 45° and 90° turned flow, and with wall mounted a baffle. The channel was heated through bottom side with the baffle. In present work, a detailed study was conducted for three different height of entry channel (named as the ratio of the height of entry channel to the height of test section (H¯c=hc/H)) by varying Reynolds number (ReDh). Another variable parameter was the ratio of the baffle height to the channel height (H¯b=hb/H). Only one baffle was attached on the bottom (heating) surface. The experimental procedure was validated by comparing the data for the straight channel with no baffle. Reynolds number (ReDh) was varied from 2800 to 30,000, so the flow was considered as only turbulent regime. All experiments were conduced with air accordingly; Prandtl number (Pr) was approximately fixed at 0.71. The results showed that average Nusselt number for θ = 45° and θ = 90° were 9% and 30% higher, respectively, than that of the straight channel without baffle. Likewise, the pressure drop increased up to 4.4 to 5.3 times compare to the straight channel.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号