首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A twin-fluid nozzle was proposed for low-pressure atomization. The nozzle is featured by swirling air flows in the mixing chamber. Liquid medium is thereby inhaled due to the pressure difference. An experimental work was performed to investigate the atomization performance of the nozzle and the hydrogen peroxide solution served as the liquid medium. Droplet size and droplet velocity were measured. Effects of the diameter of the air-injection orifice and the air-injection pressure were investigated. The results show that small droplet size is achieved with the proposed nozzle. As the spray develops, Sauter mean diameter (SMD) of the droplets decreases first and then increases, irrespective of the variation of the air-injection orifice diameter and the air-injection pressure. Overall SMD varies inversely with the air-injection orifice diameter and air-injection pressure. Near the nozzle, cross-sectional velocity distribution exhibits a peak-valley pattern, which is replaced with uniformized velocity distributions away from the nozzle. Similarity of cross-sectional radial velocity distribution at different air pressures is evidenced. Furthermore, the correlation between droplet size and droplet velocity is established.  相似文献   

2.
Measurements of droplet size in optically-thick, non-evaporating, shear-driven sprays have been made using ultra-small angle x-ray scattering (USAXS). The sprays are produced by orifice-type nozzles coupled to diesel injectors, with measurements conducted from 1 – 24 mm from the orifice, spanning from the optically-dense near-nozzle region to more dilute regions where optical diagnostics are feasible. The influence of nozzle diameter, liquid injection pressure, and ambient density were examined. The USAXS measurements reveal few if any nanoscale droplets, in conflict with a popular computational model of diesel spray breakup. The average droplet diameter rapidly decreases with downstream distance from the nozzle until a plateau value is reached, after which only small changes are seen in droplet diameter. This plateau droplet size is consistent with the droplets being small enough to be stable with respect to further breakup. Liquid injection pressure and nozzle diameter have the biggest impact on droplet size, while ambient density has a smaller effect.  相似文献   

3.
Two-phase pressure drop measurements are very difficult to make while the fluid is in non-equilibrium condition, i.e. while phase change is taking place. This is further complicated when an atomized liquid is introduced in the system at much higher velocity than other components such as liquid layer, vapor core, and entrained droplets. The purpose of this paper is to develop a model to predict the two-phase pressure characteristics in a mesochannel under various heat flux and liquid atomization conditions. This model includes the momentum effects of liquid droplets from entrainment and atomization. To verify the model, an in-house experimental setup consisting of a series of converging mesochannels, an atomization facility and a heat source was developed. The two-phase pressure of boiling PF5050 was measured along the wall of a mesochannel. The one-dimensional model shows good agreement with the experimental data. The effects of channel wall angle, droplet velocity and spray mass fraction on two-phase pressure characteristics are predicted. Numerical results show that an optimal spray cooling unit can be designed by optimizing channel wall angle and droplet velocity.  相似文献   

4.
An experimental setup has been created to allow measurements of the properties of the gas phase, the liquid phase and the mixture in a pressure-atomised spray of water, in terms of both mean quantities and Reynolds stresses. This setup involves laser Doppler velocimetry for determining the velocity of either the gas or liquid phase, according to the parameters used, such as seeding or no-seeding of the ambient air, laser source power, or photo-multiplier gains, droplet tracking velocimetry for determining the velocity and characteristic size of the droplets, and a single optical probe for determining the mean volume fraction of the liquid, from which the liquid mean mass fraction and the mean density of the mixture are inferred. The experimental conditions, in particular in terms of liquid and gas Weber numbers, were chosen in a range for which the liquid phase turbulent kinetic energy should be mainly responsible for the liquid-jet primary break-up, these flow conditions lying within the second wind-induced atomization regime. Results reported herein are more specifically focused on the region ranging from 400 nozzle diameters to 800 nozzle diameters, where the liquid core is disrupted. They provide new information about the formation and properties of such pressure-atomised sprays, in particular in terms of the role played by the Reynolds stresses resulting from the slip velocity between the liquid and the gas. The mean slip velocity is directly related to the turbulent flux of liquid. Such information will be used in the future to develop new turbulence models since very limited experimental information is so far available for these terms.  相似文献   

5.
The paper presents the results of experimental studies on atomization of the emulsions flowing through twin-fluid atomizers obtained by the use of the digital microphotography method. The main elements of the test installation were: nozzle, reservoir, pump and measurement units of liquid flow. The photographs were taken by a digital camera with automatic flash at exposure time of 1/8000 s and subsequently analyzed using Image Pro-Plus. The oils used were mineral oils 20–90, 20–70, 20–50 and 20–30. The studies were performed at flow rates of liquid phase changed from 0.0014 to 0.011 (dm3/s) and gas phase changed from 0.28 to 1.4 (dm3/s), respectively. The analysis of photos shows that the droplets being formed during the liquid atomization have very different sizes. The smallest droplets have diameters of the order of 10 μm. The experimental results showed that the changes in physical properties of a liquid phase lead to the significant changes in the spray characteristics. The analysis of the photos of water and emulsions atomization process showed that the droplet sizes are dependent on gas and liquid flow rates, construction of nozzle and properties of liquid. The differences between characteristics of atomization for water and emulsions have been observed. Analysis of photos on forming the droplets in air–water and air-emulsions systems showed that droplets are bigger in air-emulsion system (at the same value of gas to liquid mass ratio). The values of Sauter mean diameter (SMD) increased with increase of volume fraction of oil in emulsion. The droplet size increased with emulsion viscosity.  相似文献   

6.
A planar and instantaneous visualization study of high-speed gas jets and their airblast sprays was performed to qualitatively examine the different atomization performances of different gas nozzles. For the visualization of high-speed gas jets (with no liquid injected), Nd:YAG pulsed laser sheets imaged the clustered vapor molecules in the Rayleigh range (d?λ), condensed from the natural humidity during the isentropic gas expansion through a nozzle. This method visualized both underexpanded sonic gas jets from a converging nozzle (SN-Type) and overexpanded supersonic gas jets from a converging-diverging nozzle (CD-Type). When liquid is cross-injected, the same laser sheet images the spray droplets of relatively large sizes (d?λ). The present visualization results show that the SN-Type nozzle develops a wider spray than the CD-Type nozzle, quite probably because the SN-Type nozzle has a wider gas jet (in the absence of liquid) than the CD-Type. Also, the wider spray of the SN-Type nozzle lowers the probability of droplet coalescence and generates finer sprays compared to the CD-Type nozzle. These visualization results qualitatively agree with the previous quantitative finding of the different atomization characteristics of the two types of nozzles (Park et al. 1996).  相似文献   

7.
A pneumatic droplet generator to produce water/glycerin droplets smaller than the nozzle diameter is described. The generator consists of a T-junction with a nozzle fit into one opening, the second opening connected to a gas cylinder through a solenoid valve and the third connected to a length of steel tubing. The droplet generator is filled with liquid. Opening the valve for a preset time creates a pulse of alternating negative and positive pressure in the gas above the surface of the liquid, ejecting a single droplet through the nozzle. Droplet formation was photographed and the pressure variation in the droplet generator recorded. The effect of various experimental parameters, such as nozzle size, pressure pulse width and liquid properties on droplet formation was investigated. Small droplets could not be generated when liquid viscosity was too low or too high. For pure water, droplet diameters were several times that of the nozzle. Using more viscous glycerin mixtures, droplets with diameters as small as 65% of the nozzle diameter could be produced.  相似文献   

8.
Airblast atomizers are especially useful and commonplace in liquid fuel combustion applications. However, the spray formation processes, the droplet dynamics and the final drop size distributions are still not sufficiently understood due to the coupled gas-liquid interactions and turbulence generation. Therefore, empirical and semi-empirical approaches are typically used to estimate the global spray parameters. To develop a physical understanding of the spray evolution, a plain-jet airblast atomizer was investigated in an atmospheric spray rig using the phase-Doppler technique. The simultaneous drop size and axial and radial velocity components were measured on radial traverses across the spray at various axial distances from the nozzle for a range of atomizing pressures. The droplet turbulent and mean kinetic energies were found to be proportional to the atomizing pressure. Hence, the scatter of the radial motion of the droplets increased with the atomizing pressure. A droplet stability analysis was performed to locate the regions characterized by ongoing secondary atomization. The volume-to-surface diameter, D32, of the fully developed spray was compared with estimates provided by five published formulae. The role of liquid viscosity, hence the Ohnesorge number, was found to be negligible in the investigated regime. Three commonly used size distribution functions were fitted to the measured data to analyze their dependence on the atomizing pressure. The Gamma distribution function was found to give the best approximation to the atomization process.  相似文献   

9.
为探究煤油液滴不同初始直径对气液两相旋转爆轰发动机流场的影响,假设初始注入的煤油液滴具有均匀直径,考虑雾化破碎、蒸发等过程,建立了非定常两相爆轰的Eulerian-Lagrangian模型,进行了液态煤油/高温空气爆轰的非预混二维数值模拟。结果表明:在初始液滴直径为1~70μm的工况范围,燃烧室内均形成了单个稳定传播的旋转爆轰波;全局当量比为1时,爆轰波前的空气区域大于液滴煤油的蒸气区域,导致波前燃料空气混合不均匀,波前均存在富油区和贫油区,两相速度差导致分离出的空气形成低温条带;当煤油液滴的初始直径较小时,波前的反应物混合过程主要受蒸发的影响,爆轰波可稳定传播;当直径减小至1μm时,煤油液滴在入口处即蒸发,旋转爆轰波表现为气相传播的特性,爆轰波结构平整;当煤油液滴的初始直径较大时,波前的反应物混合过程主要受液滴破碎的影响;对于相同的燃料质量流量,在不同初始煤油液滴直径工况下,煤油液滴最大的停留时间均占爆轰波传播时间尺度的80%以上;爆轰波前燃料预蒸发为气相的占比越高,爆轰波的传播速度越高;初始液滴直径为10~70μm的工况范围内,爆轰波的速度随初始直径的增大先升高后降低。  相似文献   

10.
A general procedure has been developed for the simulation of charged liquid and electrostatically atomized sprays. The procedure follows a Lagrangian approach for simulation of spray droplets and a Eulerian approach for gas‐phase variables, including the electric field generated by the charge presence on droplets. Validation of the procedure was examined through simulations of previously published charged spray experiments. Results showed that for the specification of initial droplet charge, modelling the droplet charge–diameter relationship through a scaling law is as reliable a method as using a directly obtained charge–diameter relationship from experimental measurements. The normalized root‐mean‐square errors for sprays using the two methods were shown to be within 12% of one another, for the prediction of spatially averaged profiles of mean droplet diameters, mean axial velocities and mean radial droplet velocities. Results showed that the general spatial characteristics and dynamics of a charged liquid spray can successfully be reproduced, including the axial and radial dispersal pattern of droplets and the distribution of mean droplet diameters throughout the spray plume. For all sprays with droplet charges defined through a scaling law relationship, the normalized root‐mean‐square errors range from 9.0% to 31.6% for mean droplet diameters, 10.4% to 67.9% for mean axial droplet velocities and 16.8% to 38.6% for mean radial droplet velocities. Lastly, we present a brief set of general recommendations for simulating electrostatically atomized dielectric liquid sprays.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
12.
This paper examines the velocity profile of fuel issuing from a high-pressure single-orifice diesel injector. Velocities of liquid structures were determined from time-resolved ultrafast shadow images, formed by an amplified two-pulse laser source coupled to a double-frame camera. A statistical analysis of the data over many injection events was undertaken to map velocities related to spray formation near the nozzle outlet as a function of time after start of injection. These results reveal a strong asymmetry in the liquid profile of the test injector, with distinct fast and slow regions on opposite sides of the orifice. Differences of ~100 m/s can be observed between the ‘fast’ and ‘slow’ sides of the jet, resulting in different atomization conditions across the spray. On average, droplets are dispersed at a greater distance from the nozzle on the ‘fast’ side of the flow, and distinct macrostructure can be observed under the asymmetric velocity conditions. The changes in structural velocity and atomization behavior resemble flow structures which are often observed in the presence of string cavitation produced under controlled conditions in scaled, transparent test nozzles. These observations suggest that widely used common-rail supply configurations and modern injectors can potentially generate asymmetric interior flows which strongly influence diesel spray morphology. The velocimetry measurements presented in this work represent an effective and relatively straightforward approach to identify deviant flow behavior in real diesel sprays, providing new spatially resolved information on fluid structure and flow characteristics within the shear layers on the jet periphery.  相似文献   

13.
Experimental measurements and numerical simulations of a high-speed water spray are presented. The numerical model is based on a stochastic separated flow technique that includes submodels for droplet dynamics, heat and mass transfer, and droplet–droplet collisions. Because the spray characteristics near the nozzle are difficult to ascertain, a new method for initialization of particle diameter size is developed that assumes a Rosin–Rammler distribution for droplet size, which correctly reproduces experimentally measured Sauter and arithmetic mean diameters. By relating the particle initialization to lower moments of the droplet statistics, it is possible to take advantage of measurements without substantial penalties associated with the greater experimental uncertainty of individual droplet measurements. Overall, very good agreement is observed in the comparisons of experimental measurements to computational predictions for the streamwise development of mean drop size and velocity. In addition, the importance of modeling droplet–droplet collisions is highlighted with comparison of selected droplet–droplet collision models.  相似文献   

14.
The purpose of this work is to reveal the effects of fuel temperatures and ambient gas conditions on the spray-atomization behavior of soybean oil methyl ester (SME) fuel. The spray-atomization behavior was analyzed through spray parameters such as the axial distance from the nozzle tip, local and overall Sauter mean diameter (SMD). These parameters were obtained from a spray visualization system and a droplet measuring system. In addition, the experimental results were compared with the numerical results calculated by the KIVA-3V code. It was revealed that the increase of the fuel temperature (from 300 K to 360 K) little affects the spray liquid tip penetration. The increase of the ambient gas temperature (from 300 K to 450 K) caused a increase in the spray liquid tip penetration. Also, biodiesel fuel evaporation actively occurred due to the increase in the fuel temperature and the ambient gas temperature. Of special significance was that the highest vapor fuel mass concentration was observed at the center region of the spray axis. In the results of the microscopic characteristics, the detected local droplet size at the axial direction and overall droplet size at the axial and radial direction in a control volume increased when the fuel temperature increased. This is believed to be due to an increase in the number of small droplets that quickly evaporated. In addition, the increased fuel temperature caused the decrease of the number of droplets and the increase of the vapor fuel mass. The mean axial velocity of droplets decreased with increasing fuel temperature.  相似文献   

15.
A water-air impinging jets atomizer is investigated in this study, which consists of flow visualization using high speed photography and mean droplet size and velocity distribution measurements of the spray using Phase Doppler Anemometry (PDA). Topological structures and break up details of the generated spray in the far and near fields are presented with and without air jet and for an impinging angle of 90°. Spray angle increases with the water jet velocity, air flow rate and impinging angle. PDA results indicate that droplet size is smallest in the spray center, with minimum value of Sauter mean diameter (SMD) of 50 µm at the air flow rate of Qm = 13.50 g/min. SMD of droplets increases towards the spray outer region gradually to about 120 µm. The mean droplet velocity component W along the air-jet axis is highest in the spray center and decreases gradually with increasing distance from the spray center. SMD normalized by the air nozzle diameter is found firstly to decrease with gas-to-liquid mass ratio (GLR) and air-to-liquid momentum ratio (ALMR) and then remain almost constant. Its increasing with aerodynamic Weber number indicates an exponential variation. The study sheds light on the performance of water-air impinging jets atomizers providing useful information for future CFD simulation works.  相似文献   

16.
An experimental study was performed to improve the understanding of the characteristics of ultrasonic water atomization when excited with waves in the MHz range. In the present experiments, small volumes of water were atomized, observing the temporal evolution of the process. Typical diameters of the resulting droplets are of the order of a few microns. To visualize them, images were acquired with very high magnification. Appropriate lenses were used to enable high resolution at a distance from the flow. Droplet size distributions were also calculated with a Malvern diffractometer. Droplet exit velocity was measured using particle image velocimetry. It was noticeable that, as the remaining liquid mass deposited over the ultrasonic transducer decreased, the atomization characteristics changed, and a second peak of larger droplets appeared in the size distribution function. This phenomenon is related to the change in the curvature of the liquid surface. Although results are not conclusive, it appears that, under the conditions in this study, some observations about droplet formation are better described by cavitation phenomena rather than by the simplified surface wave theory usually invoked to explain these processes.  相似文献   

17.
Alinejad  Javad  Peiravi  Mohammad Mohsen 《Meccanica》2020,55(10):1975-2002

This study is investigating three-dimensional numerical simulation of a Newtonian droplet impact and break on two square cylinders based on dynamic contact angle of droplet at the spatial interface between two solid–fluid phases. The droplet impact details and morphology studied in the present work could provide ideas for the spray wall impingement modeling in the simulation of many industrial applications, such as spray painting and liquid cooling of surfaces. The droplet impact is investigated on two square cylinders in 9 different modes with different droplet diameters and physical conditions such as different positions of droplet. The volume of fluid (VOF) method was used with open-source software. The results have been compared and validated quantitatively and qualitatively with the experimental results. Results represent droplet diameter into cylinder dimension and velocity profiles are affected on number of broken droplets, break times and droplet deformation. Also, mean velocities of droplet after impact on two square cylinders at first break time were 0, 0.025, 0.12, 0.47, 0.11, 0.08, 0.2, 0.012, 0.19 m/s for cases 1–9, respectively. Moreover, in case 7 that droplet diameter into cylinder dimension was 2, the maximum number of break-up into secondary droplets was 10 drops that occurred for 4 times.

  相似文献   

18.
A two-equation turbulence model for steady incompressible two-phase flows including phase change has been recently developed by Mostafa & Elghobashi (1984). This model is tested for the flow of a turbulent axisymmetric gaseous jet laden with evaporating liquid droplets. To avoid the problem of density fluctuations of the carrier phase at this stage, only isothermal flow is considered and vaporization is assumed to be due to the vapor concentration gradient. The continuous size distribution of the droplets is approximated by finite size groups. Each group is considered as a continuous phase interpenetrating and interacting with the carrier phase. Two test cases have been predicted by the model. The first is for a Freon-11 spray issuing from a round nozzle, where experimental data are available at distances equal to or greater than 170 nozzle diameters. Good agreement between the data and the predictions was achieved. The second is for a methanol spray where no experiments are available yet and the predictions consider the flow region close to the nozzle (z/D < 40). The results of the methanol spray include distributions of the mean velocity, volume fractions of the different phases, concentration of the evaporated material in the carrier phase, turbulence intensity and shear stress of the carrier phase, droplet diameter distribution, and the jet spreading rate. In this case the results are analyzed based on a qualitative comparison with the corresponding single phase jet flow.  相似文献   

19.
Whatever the situation, liquid atomization processes show a continuous evolution of the liquid system shape. However, such a system is a multiscale object, i.e., its shape cannot be fully described by a single geometrical parameter. The present work makes use of the scale entropy function to describe this multiscale object. This function is found similar to the scale distribution previously introduced to take into account the droplet shape in liquid spray characterization. Time-averaged scale entropy is locally measured on images of atomizing liquid flows issuing from a low injection pressure single-hole triple-disk nozzle. The advantage in using this nozzle is that the atomization process and the spray are inscribed in a plane and can be fully described by 2-D visualizations. The measurements are performed from the nozzle exit down to the spray region. The operating conditions consider varying injection pressure and liquid physical properties. The temporal evolution of the scale entropy is described by the scale entropy diffusion model. Initially developed in turbulence, this model introduces new parameters such as the scale diffusivity and the local scale entropy flux sink, which characterize the diffusion dynamic of the scale entropy in the scale space. For the first time, these parameters are measured and strong correlations between them and the working conditions are evidenced. Furthermore, new parameters are introduced such as a scale viscosity and the total scale entropy flux lose. These results demonstrate the relevance of the scale entropy diffusion model to describe a liquid atomization process. This application is the first of its kind.  相似文献   

20.
Atomization of liquids with high viscosity is always a challenge, especially when small diameter droplets and high liquid flow rates are simultaneously required. In the present research, the performance of a Venturi–vortex twin-fluid swirl nozzle is examined, attending to its capabilities to generate droplets with diameters below 20 µm when atomizing pure glycerin at room temperature. In this nozzle, air is injected tangentially in a central convergent section, and discharges suctioning the liquid fed to a coaxial chamber, here using a gear pump. The resulting spray is visualized and analyzed. Droplet size distributions are measured with a laser diffractometer. As expected, droplet diameter increases with liquid flow rate, and quickly diminishes when air flow rate is increased. Sauter mean diameters (SMD) below 15 µm can be obtained even when atomizing pure glycerin. However, these values are obtained for relatively low glycerin flow rates (∼5 l/h), and with rather wide distributions. For 10 l/h and an air-to-liquid mass flow rate ratio (ALR) of 13.7 more than 26% of the glycerin volume is atomized in droplets smaller than 20 µm. Liquid ligaments are observed near the nozzle exit, but they tend to break up while moving downstream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号