首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Nyström method for the discretization of thermal layer potentials is proposed and analyzed. The method is based on considering the potentials as generalized Abel integral operators in time, where the kernel is a time dependent surface integral operator. The time discretization is the trapezoidal rule with a corrected weight at the endpoint to compensate for singularities of the integrand. The spatial discretization is a standard quadrature rule for surface integrals of smooth functions. We will discuss stability and convergence results of this discretization scheme for second-kind boundary integral equations of the heat equation. The method is explicit, does not require the computation of influence coefficients, and can be combined easily with recently developed fast heat solvers.  相似文献   

2.
The periodic initial boundary value problem of the coupled Schrödinger-Boussinesq equations is studied by the time-splitting Fourier spectral method. A time-splitting spectral discretization for the Schrödinger-like equation is applied, while a Crank-Nicolson/leap-frog type discretization is utilized for time derivatives in the Boussinesq-like equation. Numerical tests show that the time-splitting Fourier spectral method provides high accuracy for the coupled Schrödinger-Boussinesq equations.  相似文献   

3.
A new optimization formulation for simulating multiphase flow in porous media is introduced. A locally mass-conservative, mixed finite-element method is employed for the spatial discretization. An unconditionally stable, fully-implicit time discretization is used and leads to a coupled system of nonlinear equations that must be solved at each time step. We reformulate this system as a least squares problem with simple bounds involving only one of the phase saturations. Both a Gauss–Newton method and a quasi-Newton secant method are considered as potential solvers for the optimization problem. Each evaluation of the least squares objective function and gradient requires solving two single-phase self-adjoint, linear, uniformly-elliptic partial differential equations for which very efficient solution techniques have been developed.  相似文献   

4.
In this paper, we study linearly first and second order in time, uniquely solvable and unconditionally energy stable numerical schemes to approximate the phase field model of solid-state dewetting problems based on the novel "scalar auxiliary variable" (SAV) approach, a new developed efficient and accurate method for a large class of gradient flows. The schemes are based on the first order Euler method and the second order backward differential formulas (BDF2) for time discretization, and finite element methods for space discretization. The proposed schemes are proved to be unconditionally stable and the discrete equations are uniquely solvable for all time steps. Various numerical experiments are presented to validate the stability and accuracy of the proposed schemes.  相似文献   

5.
A usual way of approximating Hamilton–Jacobi equations is to couple space finite element discretization with time finite difference discretization. This classical approach leads to a severe restriction on the time step size for the scheme to be monotone. In this paper, we couple the finite element method with the nonstandard finite difference method, which is based on Mickens' rule of nonlocal approximation. The scheme obtained in this way is unconditionally monotone. The convergence of the new method is discussed and numerical results that support the theory are provided. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, a class of weighted essentially non-oscillatory (WENO) schemes with a Lax–Wendroff time discretization procedure, termed WENO-LW schemes, for solving Hamilton–Jacobi equations is presented. This is an alternative method for time discretization to the popular total variation diminishing (TVD) Runge–Kutta time discretizations. We explore the possibility in avoiding the nonlinear weights for part of the procedure, hence reducing the cost but still maintaining non-oscillatory properties for problems with strong discontinuous derivative. As a result, comparing with the original WENO with Runge–Kutta time discretizations schemes (WENO-RK) of Jiang and Peng [G. Jiang, D. Peng, Weighted ENO schemes for Hamilton–Jacobi equations, SIAM J. Sci. Comput. 21 (2000) 2126–2143] for Hamilton–Jacobi equations, the major advantages of WENO-LW schemes are more cost effective for certain problems and their compactness in the reconstruction. Extensive numerical experiments are performed to illustrate the capability of the method.  相似文献   

7.
We propose a finite element modified method of characteristics for numerical solution of convective heat transport. The flow equations are the incompressible Navier‐Stokes equations including density variation through the Boussinesq approximation. The solution procedure consists of combining an essentially non‐oscillatory modified method of characteristics for time discretization with finite element method for space discretization. These numerical techniques associate the geometrical flexibility of the finite elements with the ability offered by modified method of characteristics to solve convection‐dominated flows using time steps larger than its Eulerian counterparts. Numerical results are shown for natural convection in a squared cavity and heat transport in the strait of Gibraltar. Performance and accuracy of the method are compared to other published data. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

8.
In this paper we propose a time–space adaptive method for micromagnetic problems with magnetostriction. The considered model consists of coupled Maxwell's, Landau–Lifshitz–Gilbert (LLG) and elastodynamic equations. The time discretization of Maxwell's equations and the elastodynamic equation is done by backward Euler method, the space discretization is based on Whitney edge elements and linear finite elements, respectively. The fully discrete LLG equation reduces to an ordinary differential equation, which is solved by an explicit method, that conserves the norm of the magnetization.  相似文献   

9.
This paper is concerned with the convergence analysis of the horizontal method of lines for evolution equations of the parabolic type. Following a semidiscretization in time by \(S\) -stage one-step methods, the resulting elliptic stage equations per time step are solved with adaptive space discretization schemes. We investigate how the tolerances in each time step must be tuned in order to preserve the asymptotic temporal convergence order of the time stepping also in the presence of spatial discretization errors. In particular, we discuss the case of linearly implicit time integrators and adaptive wavelet discretizations in space. Using concepts from regularity theory for partial differential equations and from nonlinear approximation theory, we determine an upper bound for the degrees of freedom for the overall scheme that are needed to adaptively approximate the solution up to a prescribed tolerance.  相似文献   

10.
In this paper, we provide a convergence analysis of a projection semi-implicit scheme for the simulation of fluid–structure systems involving an incompressible viscous fluid. The error analysis is performed on a fully discretized linear coupled problem: a finite element approximation and a semi-implicit time-stepping strategy are respectively used for space and time discretization. The fluid is described by the Stokes equations, the structure by the classical linear elastodynamics equations (linearized elasticity, plate or shell models) and all changes of geometry are neglected. We derive an error estimate in finite time and we prove that the time discretization error for the coupling scheme is at least ${\sqrt{\delta t}}In this paper, we provide a convergence analysis of a projection semi-implicit scheme for the simulation of fluid–structure systems involving an incompressible viscous fluid. The error analysis is performed on a fully discretized linear coupled problem: a finite element approximation and a semi-implicit time-stepping strategy are respectively used for space and time discretization. The fluid is described by the Stokes equations, the structure by the classical linear elastodynamics equations (linearized elasticity, plate or shell models) and all changes of geometry are neglected. We derive an error estimate in finite time and we prove that the time discretization error for the coupling scheme is at least ?{dt}{\sqrt{\delta t}}. Finally, some numerical experiments that confirm the theoretical analysis are presented.  相似文献   

11.
We consider the numerical pricing of American options under Heston’s stochastic volatility model. The price is given by a linear complementarity problem with a two-dimensional parabolic partial differential operator. We propose operator splitting methods for performing time stepping after a finite difference space discretization. The idea is to decouple the treatment of the early exercise constraint and the solution of the system of linear equations into separate fractional time steps. With this approach an efficient numerical method can be chosen for solving the system of linear equations in the first fractional step before making a simple update to satisfy the early exercise constraint. Our analysis suggests that the Crank–Nicolson method and the operator splitting method based on it have the same asymptotic order of accuracy. The numerical experiments show that the operator splitting methods have comparable discretization errors. They also demonstrate the efficiency of the operator splitting methods when a multigrid method is used for solving the systems of linear equations.  相似文献   

12.
We derive two optimal a posteriori error estimators for an implicit fully discrete approximation to the solutions of linear integro‐differential equations of the parabolic type. A continuous, piecewise linear finite element space is used for the space discretization and the time discretization is based on an implicit backward Euler method. The a posteriori error indicator corresponding to space discretization is derived using the anisotropic interpolation estimates in conjunction with a Zienkiewicz‐Zhu error estimator to approach the error gradient. The error due to time discretization is derived using continuous, piecewise linear polynomial in time. We use the linear approximation of the Volterra integral term to estimate the quadrature error in the second estimator. Numerical experiments are performed on the isotropic mesh to validate the derived results.© 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1309–1330, 2016  相似文献   

13.
In this article, we present a new fully discrete finite element nonlinear Galerkin method, which are well suited to the long time integration of the Navier-Stokes equations. Spatial discretization is based on two-grid finite element technique; time discretization is based on Euler explicit scheme with variable time step size. Moreover, we analyse the boundedness, convergence and stability condition of the finite element nonlinear Galerkin method. Our discussion shows that the time step constraints of the method depend only on the coarse grid parameter and the time step constraints of the finite element Galerkin method depend on the fine grid parameter under the same convergence accuracy. Received February 2, 1994 / Revised version received December 6, 1996  相似文献   

14.
This study was suggested by previous work on the simulation of evolution equations with scale-dependent processes,e.g.,wave-propagation or heat-transfer,that are modeled by wave equations or heat equations.Here,we study both parabolic and hyperbolic equations.We focus on ADI (alternating direction implicit) methods and LOD (locally one-dimensional) methods,which are standard splitting methods of lower order,e.g.second-order.Our aim is to develop higher-order ADI methods,which are performed by Richardson extrapolation,Crank-Nicolson methods and higher-order LOD methods,based on locally higher-order methods.We discuss the new theoretical results of the stability and consistency of the ADI methods.The main idea is to apply a higher- order time discretization and combine it with the ADI methods.We also discuss the dis- cretization and splitting methods for first-order and second-order evolution equations. The stability analysis is given for the ADI method for first-order time derivatives and for the LOD (locally one-dimensional) methods for second-order time derivatives.The higher-order methods are unconditionally stable.Some numerical experiments verify our results.  相似文献   

15.
In the framework of solving elastodynamic problems using a least-squares mixed finite element method (LSFEM) the implementation of a stress-velocity formulation for small strains is introduced and discussed in the present contribution. The element formulation is based on a first-order div – grad system, with the balance equation of momentum and the constitutive law as the governing equations. Application of the L2-norm to the two residuals leads to a functional depending on stresses and velocities. Different time discretization schemes are considered, a scalar weighting is introduced and chosen in dependency of the different time discretization methods. In a numerical example the influence of the time integration method, the chosen time step width and the related weighing factor are investigated for a two-dimensional problem. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Magnetohydrodynamic (MHD) flows are governed by Navier–Stokes equations coupled with Maxwell equations through coupling terms. We prove the unconditional stability of a partitioned method for the evolutionary full MHD equations, at high magnetic Reynolds number, written in the Elsässer variables. The method we analyze is a first-order one-step scheme, which consists of implicit discretization of the subproblem terms and explicit discretization of the coupling terms.  相似文献   

17.
A fully discrete stabilized scheme is proposed for solving the time-dependent convection-diffusion-reaction equations. A time derivative term results in our stabilized algorithm. The finite element method for spatial discretization and the backward Euler or Crank-Nicolson scheme for time discretization are employed. The long-time stability and convergence are established in this article. Finally, some numerical experiments are provided to confirm the theoretical analysis.  相似文献   

18.
This note discusses convergence rate of a linearization method for the discretization of stochastic differential equations with multiplicative noise. The method is to approximate the drift coefficient by the local linearization method and the diffusion coefficient by the Euler method. The mixed method guarantees the approximated process converges to the original one with the rate of convergence Δt, where Δt is the time interval of discretization.  相似文献   

19.
A numerical scheme is developed to find optimal parameters and time step of m-stage Runge-Kutta (RK) schemes for accelerating the convergence to -steady-state solutions of hyperbolic equations. These optimal RK schemes can be applied to a spatial discretization over nonuniform grids such as Chebyshev spectral discretization. For each m given either a set of all eigenvalues or a geometric closure of all eigenvalues of the discretization matrix, a specially structured nonlinear minimax problem is formulated to find the optimal parameters and time step. It will be shown that each local solution of the minimax problem is also a global solution and therefore the obtained m-stage RK scheme is optimal. A numerical scheme based on a modified version of the projected Lagrangian method is designed to solve the nonlinear minimax problem. The scheme is generally applicable to any stage number m. Applications in solving nonsymmetric systems of linear equations are also discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
We present a numerical scheme for Landau–Lifshitz–Gilbert equation coupled with the equation of elastodynamics. The considered physical model describes the behaviour of ferromagnetic materials when magnetomechanical coupling is taken into account. The time‐discretization is based on the backward Euler method with projection. In the numerical approximation, the two equations are decoupled by a suitable linearization in order to solve the magnetic and mechanic part separately. The resulting semi‐implicit scheme is linear and allows larger time‐steps than explicit methods. We prove stability and error estimates for the presented time discretization in 2D. Finally, we test the accuracy of the scheme on an academic numerical example with known exact solution. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号