首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study network traffic dynamics in a two dimensional communication network with regular nodes and hubs. If the network experiences heavy message traffic, congestion occurs due to finite capacity of the nodes. We discuss strategies to manipulate hub capacity and hub connections to relieve congestion and define a coefficient of betweenness centrality (CBC), a direct measure of network traffic, which is useful for identifying hubs which are most likely to cause congestion. The addition of assortative connections to hubs of high CBC relieves congestion very efficiently. An erratum to this article is available at .  相似文献   

2.
A model for a dynamic network consisting of changing local interactions is presented in this work. While the network maintains solely local connections, certain properties known only to Small World Networks may be extracted due to the dynamic nature of the model. At each time step the individuals are grouped into clusters creating neighborhoods or domains of fully connected agents. The boundaries of these domains change in time, corresponding to a situation where the links between individuals are dynamic only throughout the history of the network. A question that we pose is whether our model, which maintains a local structure such that diffusion calculations are possible, might lead to analytic or conceptual advances for the much more complicated case of diffusion on a static disordered network that exhibits the same macroscopic properties as our dynamic ordered network. To answer this, we compare certain properties which characterize the dynamic domain network to those of a Small World Network, and then analyze the diffusion coefficients for three possible domain mutations. We close with a comparison and confirmation of previous epidemiological work carried out on networks.  相似文献   

3.
We consider distributed networks, such as peer-to-peer networks, whose structure can be manipulated by adjusting the rules by which vertices enter and leave the network. We focus in particular on degree distributions and show that, with some mild constraints, it is possible by a suitable choice of rules to arrange for the network to have any degree distribution we desire. We also describe a mechanism based on biased random walks by which appropriate rules could be implemented in practice. As an example application, we describe and simulate the construction of a peer-to-peer network optimized to minimize search times and bandwidth requirements.  相似文献   

4.
The objective of this study is to design a procedure to characterize chaotic dynamical systems, in which they are mapped onto a complex network. The nodes represent the regions of space visited by the system, while the edges represent the transitions between these regions. Parameters developed to quantify the properties of complex networks, including those related to higher order neighbourhoods, are used in the analysis. The methodology is tested on the logistic map, focusing on the onset of chaos and chaotic regimes. The corresponding networks were found to have distinct features that are associated with the particular type of dynamics that generated them.  相似文献   

5.
A concept of higher order neighborhood in complex networks, introduced previously [Phys. Rev. E 73, 046101 (2006)], is systematically explored to investigate larger scale structures in complex networks. The basic idea is to consider each higher order neighborhood as a network in itself, represented by a corresponding adjacency matrix, and to settle a plenty of new parameters in order to obtain a best characterization of the whole network. Usual network indices are then used to evaluate the properties of each neighborhood. The identification of high order neighborhoods is also regarded as intermediary step towards the evaluation of global network properties, like the diameter, average shortest path between node, and network fractal dimension. Results for a large number of typical networks are presented and discussed.  相似文献   

6.
This work describes how the formalization of complex network concepts in terms of discrete mathematics, especially mathematical morphology, allows a series of generalizations and important results ranging from new measurements of the network topology to new network growth models. First, the concepts of node degree and clustering coefficient are extended in order to characterize not only specific nodes, but any generic subnetwork. Second, the consideration of distance transform and rings are used to further extend those concepts in order to obtain a signature, instead of a single scalar measurement, ranging from the single node to whole graph scales. The enhanced discriminative potential of such extended measurements is illustrated with respect to the identification of correspondence between nodes in two complex networks, namely a protein-protein interaction network and a perturbed version of it.  相似文献   

7.
The detection of community structure has been used to reveal the relationships between individual objects and their groupings in networks. This paper presents a mathematical programming approach to identify the optimal community structures in complex networks based on the maximisation of a network modularity metric for partitioning a network into modules. The overall problem is formulated as a mixed integer quadratic programming (MIQP) model, which can then be solved to global optimality using standard optimisation software. The solution procedure is further enhanced by developing special symmetry-breaking constraints to eliminate equivalent solutions. It is shown that additional features such as minimum/maximum module size and balancing among modules can easily be incorporated in the model. The applicability of the proposed optimisation-based approach is demonstrated by four examples. Comparative results with other approaches from the literature show that the proposed methodology has superior performance while global optimum is guaranteed.  相似文献   

8.
A random pseudofractal network (RPN) is generated by a recursive growing rule. The RPN is of the scale-free feature and small-world effect. We obtain the theoretical results of power-law exponent γ=3, clustering coefficient C=3π2-19≈ 0.74, and a proof that the mean distance increases no faster than ln N, where N is the network size. These results agree with the numerical simulation very well. In particular, we explain the property of growth and preferential attachment in RPNs. And the properties of a class of general RPNs are discussed in the end.  相似文献   

9.
We analyze gene expression time-series data of yeast (S. cerevisiae) measured along two full cell-cycles. We quantify these data by using q-exponentials, gene expression ranking and a temporal mean-variance analysis. We construct gene interaction networks based on correlation coefficients and study the formation of the corresponding giant components and minimum spanning trees. By coloring genes according to their cell function we find functional clusters in the correlation networks and functional branches in the associated trees. Our results suggest that a percolation point of functional clusters can be identified on these gene expression correlation networks.  相似文献   

10.
In this work, we propose and study a model for the diffusion of congestion in complex networks. According to the proposed model, the level of congestion on each node will be self-organized into the same value. The diffusion of congestion throughout various networks with different topologies is investigated analytically and by numerical tests. The flow fluctuations in complex networks are studied. We recover a power-law scaling relation between the standard deviation and mean flow, which is consistent with the previous studies. Finally, we extend our model by adding two constraints, which may be effective strategies for diffusing the local and the global congestion in complex networks, respectively.  相似文献   

11.
Many networks extent in space, may it be metric (e.g. geographic) or non-metric (ordinal). Spatial network growth, which depends on the distance between nodes, can generate a wide range of topologies from small-world to linear scale-free networks. However, networks often lacked multiple clusters or communities. Multiple clusters can be generated, however, if there are time windows during development. Time windows ensure that regions of the network develop connections at different points in time. This novel approach could generate small-world but not scale-free networks. The resulting topology depended critically on the overlap of time windows as well as on the position of pioneer nodes.  相似文献   

12.
We carry out comparative studies of random walks on deterministic Apollonian networks (DANs) and random Apollonian networks (RANs). We perform computer simulations for the mean first-passage time, the average return time, the mean-square displacement, and the network coverage for the unrestricted random walk. The diffusions both on DANs and RANs are proved to be sublinear. The effects of the network structure on the dynamics and the search efficiencies of walks with various strategies are also discussed. Contrary to intuition, it is shown that the self-avoiding random walk, which has been verified as an optimal local search strategy in networks, is not the best strategy for the DANs in the large size limit.  相似文献   

13.
There has been a considerable amount of interest in recent years on the robustness of networks to failures. Many previous studies have concentrated on the effects of node and edge removals on the connectivity structure of a static network; the networks are considered to be static in the sense that no compensatory measures are allowed for recovery of the original structure. Real world networks such as the world wide web, however, are not static and experience a considerable amount of turnover, where nodes and edges are both added and deleted. Considering degree-based node removals, we examine the possibility of preserving networks from these types of disruptions. We recover the original degree distribution by allowing the network to react to the attack by introducing new nodes and attaching their edges via specially tailored schemes. We focus particularly on the case of non-uniform failures, a subject that has received little attention in the context of evolving networks. Using a combination of analytical techniques and numerical simulations, we demonstrate how to preserve the exact degree distribution of the studied networks from various forms of attack.  相似文献   

14.
Biological and social systems have been found to possess a non-trivial underlying network structure of interacting components. An important current question concerns the nature of the evolutionary processes that have led to the observed structural patterns dynamically. By comparing the metabolic networks of evolutionarily closeby as well distant species, we present results on the evolution of these networks over short as well as long time scales. We observe that the amount of change in the reaction set of a metabolite across different species is proportional to the degree of the metabolite, thus providing empirical evidence for a `proportionate change' mechanism. We find that this evolutionary process is characterized by a power law with a universal exponent that is independent of the pair of species compared.  相似文献   

15.
We propose a novel capacity model for complex networks against cascading failure. In this model, vertices with both higher loads and larger degrees should be paid more extra capacities, i.e. the allocation of extra capacity on vertex i will be proportional to ki γ , where ki is the degree of vertex i and γ > 0 is a free parameter. We have applied this model on Barabási-Albert network as well as two real transportation networks, and found that under the same amount of available resource, this model can achieve better network robustness than previous models.  相似文献   

16.
In this paper we examine a number of methods for probing and understanding the large-scale structure of networks that evolve over time. We focus in particular on citation networks, networks of references between documents such as papers, patents, or court cases. We describe three different methods of analysis, one based on an expectation-maximization algorithm, one based on modularity optimization, and one based on eigenvector centrality. Using the network of citations between opinions of the United States Supreme Court as an example, we demonstrate how each of these methods can reveal significant structural divisions in the network and how, ultimately, the combination of all three can help us develop a coherent overall picture of the network's shape.  相似文献   

17.
We investigate Threshold Random Boolean Networks with K = 2 inputs per node, which are equivalent to Kauffman networks, with only part of the canalyzing functions as update functions. According to the simplest consideration these networks should be critical but it turns out that they show a rich variety of behaviors, including periodic and chaotic oscillations. The analytical results are supported by computer simulations.  相似文献   

18.
According to Fortunato and Barthélemy, modularity-based community detection algorithms have a resolution threshold such that small communities in a large network are invisible. Here we generalize their work and show that the q-state Potts community detection method introduced by Reichardt and Bornholdt also has a resolution threshold. The model contains a parameter by which this threshold can be tuned, but no a priori principle is known to select the proper value. Single global optimization criteria do not seem capable for detecting all communities if their size distribution is broad.  相似文献   

19.
In weighted networks, redistribution of link weights can effectively change the properties of networks, even though the corresponding binary topology remains unchanged. In this paper, the effects of weight randomization on synchronization of coupled chaotic maps is investigated on regular weighted networks. The results reveal that synchronizability is enhanced by redistributing of link weights, i.e. coupled maps reach complete synchronization with lower cost. Furthermore, we show numerically that the heterogeneity of link weights could improve the complete synchronization on regular weighted networks.  相似文献   

20.
Identifying universal patterns in complex economic systems can reveal the dynamics and organizing principles underlying the process of system evolution. We investigate the scaling behaviours that have emerged in the international trade system by describing them as a series of evolving weighted trade networks. The maximum-flow spanning trees (constructed by maximizing the total weight of the edges) of these networks exhibit two universal scaling exponents: (1) topological scaling exponent η = 1.30 and (2) flow scaling exponent ζ = 1.03.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号