首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Submicron particles with modified surface were synthesized by a simple one-pot synthesis approach and used as drug carrier for controlled release. Due to the alkalinity of MgO species on the surface, the amount of a model drug, ibuprofen, adsorbed on the modified surface was increased as compared to pure silica SBA-15 although the surface area was decreased by the surface modification. FTIR investigation indicated that the adsorption state of ibuprofen on MgO modified SBA-15 was different from that on pure silica SBA-15 and pure crystal ibuprofen. The result obtained from in vitro release test exhibited that the surface modification greatly decreased the ibuprofen release rate. In first 6 h in vitro release test, only 63% of the adsorbed ibuprofen was released from the MgO/SBA-15 (Si/Mg=20). In contrast, the release of ibuprofen was complete in 1 h from the pure silica SBA-15 under the same release conditions. The surface modified with MgO created affinity with acidic ibuprofen molecules and retarded the release rate from the mesoporous matrix. In addition, the release rate of ibuprofen could be modulated by varying the content of MgO, and was found to decrease with increasing amount of MgO on surface of SBA-15 submicron particles.  相似文献   

2.
A site‐selective controlled delivery system for controlled drug release is fabricated through the in situ assembly of stimuli‐responsive ordered SBA‐15 and magnetic particles. This approach is based on the formation of ordered mesoporous silica with magnetic particles formed from Fe(CO)5 via the surfactant‐template sol‐gel method and control of transport through polymerization of N‐isopropyl acrylamide inside the pores. Hydrophobic Fe(CO)5 acts as a swelling agent as well as being the source of the magnetic particles. The obtained system demonstrates a high pore diameter (7.1 nm) and pore volume (0.41 cm3 g?1), which improves drug storage for relatively large molecules. Controlled drug release through the porous network is demonstrated by measuring the uptake and release of ibuprofen (IBU). The delivery system displays a high IBU storage capacity of 71.5 wt %, which is almost twice as large as the highest value based on SBA‐15 ever reported. In vitro testing of IBU loading and release exhibits a pronounced transition at around 32 °C, indicating a typical thermosensitive controlled release.  相似文献   

3.
Three kinds of highly ordered SBA-15 mesoporous materials with different pore sizes and morphologies denoted as LPS-SBA-15 (stick-like with pore size 7.28 nm), CPS-SBA-15 (stick-like with pore size 5.96 nm) and T-SBA-15 (tablet-like with pore size 4.64 nm) have been prepared, characterized and employed as carrier materials. The release behaviors of the ibuprofen in a simulated body fluid from these mesoporous silica materials were studied. The influences of pore size and exterior morphologies of mesoporous silica on the release behaviors of ibuprofen have been investigated. It has been found that the release becomes fast with increasing of pore size and slow with extending of transport pathway, and that the release rate of ibuprofen from the three kinds of SBA-15 is LPS-SBA-15 > T-SBA-15 > CPS-SBA-15. The results show that the inner structure as well as the exterior morphologies of SBA-15 mesoporous silica can seriously affect the release behaviors of ibuprofen.  相似文献   

4.
In this study, a long-term controlled drug release system was designed based on mesoporous bioactive glass coated with poly(lactide-co-glycolide) (MBG/PLGA). In this system ibuprofen (Ibu) and egg white protein were used as the model drugs. Firstly, Ibu was loaded into MBG and MBG/PLGA microspheres were formed after MBG/PLGA. Then the egg white protein was adsorbed outside of the MBG/PLGA because of the interaction between the hydroxyapatite and the protein. The drug release tests indicate that Ibu and egg white protein can release from the long-term controlled dual drugs system at the same time. Notably, the release time of Ibu can reach 18 days, and the release time of egg white protein can reach to 6 days due to the role of PLGA. The release rate of Ibu is 49 % of loading rate (46 %), while the release rate of egg white protein is 47 % of adsorption value (184 μg/mg), indicating that the dual drug release system is highly potential in the practical bone repair application.  相似文献   

5.
A series of mesoporous silica materials with similar pore sizes, different morphologies and variable pore geometries were prepared systematically. In order to control drug release, ibuprofen was employed as a model drug and the influence of morphology and pore geometry of mesoporous silica on drug release profiles was extensively studied. The mesoporous silica and drug-loaded samples were characterized by X-ray diffraction, Fourier transform IR spectroscopy, N2 adsorption and desorption, scanning electron microscopy, and transmission electron microscopy. It was found that the drug-loading amount was directly correlated to the Brunauer-Emmett-Teller surface area, pore geometry, and pore volume; while the drug release profiles could be controlled by tailoring the morphologies of mesoporous silica carriers.  相似文献   

6.
MCM-41 and SBA-15 silica materials with spherical morphology and different particle sizes were synthesized and modified by post-synthesis method with 3-aminopropyltriethoxysilane (APTES). A comparative study of the adsorption and release of a model drug, ibuprofen, were carried out. The modified and drug loaded mesoporous materials were characterized by XRD, TEM, N2 physisorption, thermal analysis, elemental analysis and FT-IR spectroscopy. Surface modification with amino groups resulted in high degree of ibuprofen loading and slow rate of release for MCM-41, whereas it was the opposite for SBA-15. The adsorbed drug content and the delivery rate can be predetermined by the choice of mesoporous material with the appropriate structural characteristics and surface functionality.  相似文献   

7.
Luminescent and porous silica fibers have been successfully prepared by using the electrospinning process. The obtained multifunctional silica fibers, which possess a porous structure and display blue luminescence, can serve as a drug delivery host carrier, using ibuprofen (IBU) as a model drug, allowing the investigation of storage/release properties. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), N(2) adsorption/desorption, photoluminescence (PL) spectra, and kinetic decay were used to characterize the structural, morphological, and optical properties of the as-obtained samples. The results reveal that the multifunctional silica materials exhibit an irregular porous structure, and display a fiberlike morphology with dimensions of several hundred nanometers in width and several millimeters in length. The obtained silica fibers exhibit an intense broad bluish emission, which might be attributed to impurities and/or defects in the silica fibers. The IBU-loaded silica fiber system shows blue luminescence under UV irradiation and controlled release behavior for IBU. In addition, the emission intensities of silica fibers in the drug carrier system vary with the released amount of IBU, thus allowing the drug release to be easily tracked and monitored by the change of the luminescence intensity.  相似文献   

8.
With well bioactive and nontoxic, hydroxyapatite (HAp) was employed to seal the nanopores of mesoporous silica (MCM-41) to realize the pH-responsive controlled release. First, MCM-41 was modified with cationic polymer, poly-(diallyldimethylammoniumchloride) (PA). And after the addition of Ca2+/PO4 3?, HAp precipitation can take place based on the cationic sites derived from PA. It is a simple and effective way to obtain HAp coating MCM-41 system (MHAs). The structure of the system was characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope, N2 adsorption–desorption and so on. Metformin hydrochloride was used as the model drug, and the drug release performance and the release kinetics of the system were investigated in detail. Because of the degradation of HAp under acid condition, the drug loading MHAs showed a well pH-sensitive controlled release behavior. From above investigation, MHAs is a promising platform to construct a pH-responsive controlled drug delivery system, especially for some low pH tissues, such as inflammatory and tumor.  相似文献   

9.
Ordered mesoporous materials exhibit potential features to be used as controlled drug delivery systems, including their wide range of chemical compositions and their outstanding textural and structural properties. Therefore, it is possible to control the drug release kinetics by tailoring such parameters. In this paper, mesoporous materials such as MCM-48 and SBA-15, which present different pore sizes (3.7 and 8.8 nm) and structural characteristics (3D-bicontinuous cubic and 2D-hexagonal, respectively) have been synthesized to evaluate their application as drug delivery system and to determine their influence on release kinetic of ibuprofen. Moreover, a chemical modification of the SBA-15 mesoporous material with octadecyltrimethoxysilane has also been performed to study its influence on the release rate of ibuprofen. The structural characteristics (3D cubic and 2D hexagonal pore system) do not affect the release kinetic profiles of ibuprofen. On the contrary, the pore size affects highly to the release kinetic profiles from first-order kinetic to zero-order kinetic for MCM-48 and SBA-15, respectively. Moreover, the importance of surface functionalization was demonstrate through the very fast delivery of ibuprofen from SBA-15 mesoporous materials functionalized with octadecyl chains.  相似文献   

10.
The synthesis of an innovative self‐propelled Janus nanomotor with a diameter of about 75 nm that can be used as a drug carrier is described. The Janus nanomotor is based on mesoporous silica nanoparticles (MSNs) with chromium/platinum metallic caps and propelled by decomposing hydrogen peroxide to generate oxygen as a driving force with speeds up to 20.2 μm s?1 (about 267 body lengths per second). The diffusion coefficient (D) of nanomotors with different H2O2 concentrations is calculated by tracking the movement of individual particles recorded by means of a self‐assembled fluorescence microscope and is significantly larger than free Brownian motion. The traction of a single Janus MSN nanomotor is estimated to be about 13.47×10?15 N. Finally, intracellular localization and drug release in vitro shows that the amount of Janus MSN nanomotors entering the cells is more than MSNs with same culture time and particle concentrations, meanwhile anticancer drug doxorubicin hydrochloride loaded in Janus MSNs can be slowly released by biodegradation of lipid bilayers in cells.  相似文献   

11.
Two model drugs of different physico-chemical and pharmaceutical properties (ibuprofen, acetaminophen) have been incorporated together or separately in silica-based microspheres using sol–gel and spray-drying processes. A variable amount of a neutral surfactant Brij-56© has also been added. The properties of the microspheres vary significantly depending on their composition. Three kinds of texture are identified: (1) silica containing spheroid nano-domains (formed by ibuprofen; diameters between 20 and 100 nm), (2) silica containing worm-like mesophases (formed by Brij-56© and both model drugs, typical correlation distances ~6 nm), (3) silica intimately mixed with the drug (acetaminophen) without visible phase-separation. The kinetics of drug release in simulated intestinal fluid strongly depend on these textures. The association of ibuprofen and acetaminophen in a single type of microsphere and without surfactant favours a concomitant release. Possible mechanisms of materials’ formation are discussed.  相似文献   

12.
A bicontrollable drug release system was developed by layer-by-layer assembly of poly(allylamine hydrochloride) (PAH)/sodium poly(styrene sulfonate) (PSS) multilayers onto a Fe3O4/SiO2 composite core. The saturated magnetization of this system reaches up to 38.6 emu/g at RT, making targeting easily controlled by an external magnetic field. Meanwhile, the packing of the polyelectrolyte multilayers is sensitive to pH values, generating a pH-switch on-off mode for the release of loaded drugs. In this specific case, the release of a chemotherapeutic polyoxometalate K7Ti2W10PO40·6H2O (PM–19) was tested. Transmission electron microscopy (TEM) was used to examine the nanostructure of the composite drug release system. UV–vis absorption was used to monitor the drug release. Fourier transform infrared (FTIR), Powder X–ray diffraction, and Elemental analyses were used to study the composition of tested systems. The structure and composition of the composite system was also studied using magnetism measurement and nitrogen adsorption–desorption.  相似文献   

13.
The adsorption capacity and release properties of mesoporous materials for drug molecules can be improved by functionalizing their surfaces with judiciously chosen organic groups. Functionalized ordered mesoporous materials containing various types of organic groups via a co-condensation synthetic method from 15% organosilane and by post-grafting organosilanes onto a pre-made mesoporous silica were synthesized. Comparative studies of their adsorption and release properties for various model drug molecules were then conducted. Functional groups including 3-aminopropyl, 3-mercaptopropyl, vinyl, and secondary amine groups were used to functionalize the mesoporous materials while rhodamine 6G and ibuprofen were utilized to investigate the materials’ relative adsorption and release properties. The self-assembly of the mesoporous materials was carried out in the presence of cetyltrimethylammonium bromide (CTAB) surfactant, which produced MCM-41 type materials with pore diameters of ∼2.7-3.3 nm and moderate to high surface areas up to ∼1000 m2/g. The different functional groups introduced into the materials dictated their adsorption capacity and release properties. While mercaptopropyl and vinyl functionalized samples showed high adsorption capacity for rhodamine 6G, amine functionalized samples exhibited higher adsorption capacity for ibuprofen. While the diffusional release of ibuprofen was fitted on the Fickian diffusion model, the release of rhodamine 6G followed Super Case-II transport model.  相似文献   

14.
《中国化学快报》2021,32(12):3696-3704
Drug delivery systems (DDS) are used to deliver therapeutic drugs to improve selectivity and reduce side effects. With the development of nanotechnology, many nanocarriers have been developed and applied to drug delivery, including mesoporous silica. Mesoporous silica nanoparticles (MSNs) have attracted a lot of attention for simple synthesis, biocompatibility, high surface area and pore volume. Based on the pore system and surface modification, gated mesoporous silica nanoparticles can be designed to realize on-command drug release, which provides a new approach for selective delivery of antitumor drugs. Herein, this review mainly focuses on the “gate keepers” of mesoporous silica for drug controlled release in nearly few years (2017–2020). We summarize the mechanism of drug controlled release in gated MSNs and different gated materials: inorganic gated materials, organic gated materials, self-gated drug molecules, and biological membranes. The facing challenges and future prospects of gated MSNs are discussed rationally in the end.  相似文献   

15.
The preparation of thermoresponsive drug carriers with a self‐destruction property is presented. These drug carriers were fabricated by incorporation of drug molecules and thermoresponsive copolymer, poly(N‐isopropylacrylamide‐co‐acrylamide), into silica nanoparticles in a one‐pot preparation process. The enhanced drug release was primarily attributed to faster molecule diffusion resulting from the particle decomposition triggered by phase transformation of the copolymer upon the temperature change. The decomposition of the drug carriers into small fragments should benefit their fast excretion from the body. In addition, the resulting drug‐loaded nanoparticles showed faster drug release in an acidic environment (pH 5) than in a neutral one. The controlled drug release of methylene blue and doxorubicin hydrochloride and the self‐decomposition of the drug carriers were successfully characterized by using TEM, UV/Vis spectroscopy, and confocal microscopy. Together with the nontoxicity and excellent biocompatibility of the copolymer/SiO2 composite, the features of controlled drug release and simultaneous carrier self‐destruction provided a promising opportunity for designing various novel drug‐delivery systems.  相似文献   

16.
Pure and modified silica materials were synthesised by a sol–gel process and used as carrier for the controlled release of ibuprofen, selected as model drug. A one‐step synthesis was optimised for the preparation of various silica–drug composites by using tetraethoxysilane and 3‐aminopropyltriethoxysilane as precursors at different molar ratios. The presence of aminopropyl groups on the silica surface influences the drug‐delivery rate leading to a high degree the desorption process controlled.  相似文献   

17.
The development of controlled drug delivery systems based on bio-renewable materials is an emerging strategy. In this work, a controlled drug delivery system based on mesoporous oxidized cellulose beads (OCBs) was successfully developed by a facile and green method. The introduction of the carboxyl groups mediated by the TEMPO(2,2,6,6-tetramethylpiperidine-1-oxyradical)/NaClO/NaClO2 system presents the pH-responsive ability to cellulose beads, which can retain the drug in beads at pH = 1.2 and release at pH = 7.0. The release rate can be controlled by simply adjusting the degree of oxidation to achieve drug release at different locations and periods. A higher degree of oxidation corresponds to a faster release rate, which is attributed to a higher degree of re-swelling and higher hydrophilicity of OCBs. The zero-order release kinetics of the model drugs from the OCBs suggested a constant drug release rate, which is conducive to maintaining blood drug concentration, reducing side effects and administration frequency. At the same time, the effects of different model drugs and different drug-loading solvents on the release behavior and the physical state of the drugs loaded in the beads were studied. In summary, the pH-responsive oxidized cellulose beads with good biocompatibility, low cost, and adjustable release rate have shown great potential in the field of controlled drug release.  相似文献   

18.
Simultaneous determination of two antidiabetic drugs, metformin and glyburide, in pharmaceutical tablet formulations were investigated. Normal phase thin layer chromatography plate (silica gel 60 F254) was used as stationary phase and water/methanol/ammonium sulfate (2/1/0.5 w/v) as mobile phase to determine two pharmaceutically active ingredients, in three different formulations of Glucovance®. This system gave a good resolution for metformin (R f value of 0.43 ± 0.01) and glyburide (R f value of 0.64 ± 0.02). Determination was by densitometry in the absorbance mode at 237 nm. The linear regression data for the calibration plot showed a good relationship with r = 0.99581 and 0.99982 for metformin and glyburide, respectively. The method was validated for precision and recovery. The limits of detection and quantification were 25.24 and 84.12 ng spot?1 for metformin and 12.26 and 40.86 ng spot?1 for glyburide, respectively. Stability study has been carried out for samples and standard solutions.  相似文献   

19.
The ordered mesoporous silica material SBA-15 was loaded with the model drugs itraconazole and ibuprofen using three different procedures: (i) adsorption from solution, (ii) incipient wetness impregnation, and (iii) heating of a mixture of drug and SBA-15 powder. The location of the drug molecules in the SBA-15 particles and molecular interactions were investigated using nitrogen adsorption, TGA, DSC, DRS UV-vis, and XPS. The in vitro release of hydrophobic model drugs was evaluated in an aqueous environment simulating gastric fluid. The effectiveness of the loading method was found to be strongly compound dependent. Incipient wetness impregnation using a concentrated itraconazole solution in dichloromethane followed by solvent evaporation was most efficient for dispersing itraconazole in SBA-15. The itraconazole molecules were located on the mesopore walls and inside micropores of the mesopore walls. When SBA-15 was loaded by slurrying it in a diluted itraconazole solution from which the solvent was evaporated, the itraconazole molecules ended up in the mesopores that they plugged locally. At a loading of 30 wt %, itraconazole exhibited intermolecular interactions inside the mesopores revealed by UV spectroscopy and endothermic events traced with DSC. The physical mixing of itraconazole and SBA-15 powder followed by heating above the itraconazole melting temperature resulted in formulations in which glassy itraconazole particles were deposited externally on the SBA-15 particles. Loading with ibuprofen was successful with each of the three loading procedures. Ibuprofen preferably is positioned inside the micropores. In vitro release experiments showed fast release kinetics provided the drug molecules were evenly deposited over the mesoporous surface.  相似文献   

20.
A controlled drug‐delivery system has been developed based on mesoporous silica nanoparticles that deliver anticancer drugs into cancer cells with minimized side effects. The copolymer of two oligo(ethylene glycol) macromonomers cross‐linked by the disulfide linker N,N′‐bis(acryloyl)cystamine is used to cap hollow mesoporous silica nanoparticles (HMSNs) to form a core/shell structure. The HMSN core is applied as a drug storage unit for its high drug loading capability, whereas the polymer shell is employed as a switch owing to its redox/temperature dual responses. The release behavior in vitro of doxorubicin demonstrated that the loaded drugs could be released rapidly at higher temperature or in the presence of glutathione (GSH). Thus, the dual‐stimulus polymer shell exhibiting a volume phase transition temperature higher than 37 °C can effectively avoid drug leakage in the bloodstream owing to the swollen state of the shell. Once internalized into cells, the carriers shed the polymer shell because of cleavage of the disulfide bonds by GSH, which results in the release of the loaded drugs in cytosol. This work may prove to be a significant development in on‐demand drug release systems for cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号