首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photopolymerization of the vinyl monomer (M) of methyl methacrylate (MMA) was kinetically studied by using near-UV/visible light at 40°C and employing a morpholine (MOR)–sulfur dioxide (SO2) charge-transfer (C-T) complex as the photoinitiator. The rate of polymerization (RP) was found to be dependent on the morpholine: sulfur dioxide mole ratio; the 1 : 2 (MOR–SO2) complex acted as the latent initiator complex C which underwent further complexation with the monomer molecules to give the actual initiating complex I. Using the 1 : 2 (MOR–SO2) C-T complex as the latent initiator, the observed kinetics may be expressed as RP [MOR–SO2]0.27[M]1.10. Benzoquinone behaved as a strong inhibitor. Polymers obtained tested positive for the incorporation of a sulphonate-type end group. Polymerization followed a radical mechanism. Kinetic nonideality as revealed by a low initiator exponent and monomer exponent of greater than unity was explained on the basis of a prominent primary radical termination effect. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1973–1979, 1998  相似文献   

2.
Phenacyl morpholine‐4‐dithiocarbamate is synthesized and characterized. Its capability to act as both a photoiniferter and reversible addition fragmentation chain transfer agent for the polymerization of styrene is examined. Polymerization carried out in bulk under ultra violet irradiation at above 300 nm at room temperature shows controlled free radical polymerization characteristics up to 50% conversions and produces well‐defined polymers with molecular weights close to those predicted from theory and relatively narrow poyldispersities (Mw/Mn ~ 1.30). End group determination and block copolymerization with methyl acrylate suggest that morpholino dithiocarbamate groups were attained at the end of the polymer. Photolysis and polymerization studies revealed that polymerization proceeds via both reversible termination and RAFT mechanisms. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3387–3395, 2008  相似文献   

3.
Polymerization of methyl methacrylate (MMA) was kinetically studied under photo condition using near UV visible light at 40°C and employing morpholine (MOR)–chlorine (Cl2) charge transfer (C-T) complex as the photoinitiator. The rate of polymerization (Rp) was dependent on morpholine/chlorine mole ratio; the 1 : 2 (MOR–Cl2) C-T complex acted as the latent initiator complex, C, which underwent further complexation with the monomer molecules to give the actual initiator complex, I. Using 1 : 2 (MOR-Cl2) C-T complex as the latent initiator, the initiator exponent evaluated for bulk photopolymerization of MMA was 0.071 and monomer exponent determined from studies of photopolymerization in benzene diluted system was 1.10. Benzoquinone behaved as a strong inhibitor and the polymers tested positive for the incorporation of chlorine atom end groups. Polymerization followed a radical mechanism. Kinetic nonideality as revealed by low (≪0.5) initiator exponent and a monomer exponent of greater than unity were explained in terms of primary radical termination effect. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1681–1687, 1997  相似文献   

4.
PtIV and PdII complexes [Pt(L)2Cl2] and [Pd(HL)Cl2] [HL = salicyclaldehyde morpholine N-thiohydrazone (HL1), benzaldehyde morpholine N-thiohydrazone (HL2), acetophenone morpholine N-thiohydrazone (HL3), p-methylacetophenone morpholine N-thiohydrazone (HL4), cinnamaldehyde morpholine N-thiohydrazone (HL5), cyclohexanone morpholine N-thiohydrazone (HL6), benzaldehyde aniline N-thiohydrazone (HL7), benzaldehyde N-(methyl, cyclohexyl)-thiohydrazone (HL8) and benzaldehyde N-(ethyl, cyclohexyl)-thiohydrazone (HL9)] were prepared in MeOH and characterized by elemental analysis, i.r., electronic, 1H-n.m.r. and 13C-n.m.r. spectral data. For some of the complexes cyclic voltammetric and thermal studies were carried out. The in vitro antitumor activity of some complexes was measured.  相似文献   

5.
The kinetics of reactions of acrylamide derivatives (acrylamidotrihydroxymethylmethane (TA), sodium 4-acrylamidobutanoate (AA3), sodium 6-acrylamidohexanoate (AA5), and sodium 11-acrylamido-undecanoate (AA10)) with piperidine and morpholine in water (for TA, also in DMF, DMSO, and formamide) is studied at 293 K. These compounds are weak surfactant monomers. The critical concentrations of micelle formation (CCM) for them are determined. The self-association of AA3, AA5, and AA10 producing micelles results in a decrease in their reactivity compared to the monomeric forms. The rates of the reactions of surfactant monomers (SM) with morpholine and piperidine are described by the second-order rate law w 0 = k[SM]0[Amine]0. An empirical equation is derived that relates the CCM values to the rate constant for the reaction of a surfactant monomer with a secondary amine with charges on the -carbon and oxygen atoms of the amide group of a surfactant monomer. The rates of the reactions of TA with piperidine and morpholine are determined by the electrophilicity (acidity) of the medium, which is favorable for the Michael reaction.  相似文献   

6.
Morpholine adducts of nickel(II), cobalt(II), and manganese(II) benzoylacetonates, as well as a morpholine solvate of manganese(II) benzoylacetonate, were prepared and characterized by X-ray diffraction and thermal analysis. All four compounds crystallize in the P21/c space group with two complex molecules per unit cell. The morpholine solvate, along with the two adduct molecules, also contains four solvent morpholine molecules in the unit cell. The non-solvate compounds are isostructural, with crystal structures comprising 2D networks formed by C–H···O hydrogen bonding between phenyl rings and morpholine oxygen atoms. The topology of these networks can be described as intersecting C22(24) chains forming R44(48) rings. Networks with the same topology are also present in the solvate, but they are heavily distorted due to the presence of solvent morpholine molecules. Thermogravimetric analysis shows similar behavior of the non-solvate compounds upon thermal decomposition, with three degradation steps which can be related to gradual loss of morpholine molecules and subsequent overall decomposition. Decomposition of the solvate also proceeds in several steps, the first of which can be related to loss of solvent morpholine molecules and the further steps are analogous to those in the non-solvate compounds.  相似文献   

7.
In the complex (morpholine)[2‐hydroxy‐N′‐(5‐nitro‐2‐oxidobenzylidene)benzohydrazidato]nickel(II), [Ni(C14H9N3O5)(C4H9NO)], (I), the NiII center is in a square‐planar N2O2 coordination geometry. The complex bis[μ‐2‐hydroxy‐N′‐(2‐oxidobenzylidene)benzohydrazidato]bis[(morpholine)zinc(II)], [Zn2(C14H10N2O3)2(C4H9NO)2], (II), consists of a neutral centrosymmetric dimer with a coplanar Zn22‐O)2 core. The two ZnII centers are bridged by phenolate O atoms. Each ZnII center exhibits a distorted square‐pyramidal stereochemistry, in which the four in‐plane donors come from the O,N,O′‐tridentate 2‐hydroxy‐N′‐(2‐oxidobenzylidene)benzohydrazidate(2−) ligand and a symmetry‐related phenolate O atom, and the axial position is coordinated to the N atom from the morpholine molecule. There are intramolecular phenol–hydrazide O—H...N hydrogen bonds present in both (I) and (II). In (I), square‐planar nickel complexes are linked by intermolecular morpholine–morpholine N—H...O hydrogen bonds, leading to a one‐dimensional chain, while in (II) an infinite two‐dimensional network is formed via intermolecular hydrogen bonds between the coordinated morpholine NH groups and the uncoordinated phenolate O atoms.  相似文献   

8.
The effect of temperature and conversion on the polymerization rate at higher conversion was investigated with regard to the γ-ray-induced polymerization of hydroxyethyl methacrylate (HEMA) and glycidyl methacrylate (GMA) in the supercooled phase. The polymerization rate changed from acceleration to depression at various conversions, depending on the polymerization temperature. It was found that Tv at which the viscosity of the system became ca. 103 cpoise influenced the shape of the polymerization time–conversion curve. The experimentally obtained conversion reflection point in the polymerization time–conversion curve agreed with the conversion where the polymerization temperature is the same as the calculated Tv of the system. When the polymerization temperature was lower than Tv of the monomer, no acceleration of the polymerization occurred. When the polymerization temperature was higher than Tv of the polymer, no depression of the polymerization rate was observed. The effect of temperature on the saturated conversion (final conversion) was also examined in terms of Tg of the polymerization system. The experimentally obtained saturated conversion agreed with the conversion where the polymerization temperature is the same as the calculated Tg of the system.  相似文献   

9.
The effect of temperature on the rate of 1‐hexene polymerization over supported titanium–magnesium catalyst of composition TiCl4/D1/MgCl2 + AlR3/D2 (D1 is dibutyl phthalate, D2 is propyltrimethoxysilane, and AlR3 is an organoaluminum cocatalyst) is studied. The unusual data that the polymer rate decreases when temperature is increased from 30 to 70 °C are obtained. The 1‐hexene polymerization rate and the pattern of changes in polymerization rate with temperature depend on a combination of factors such as cocatalyst (AlEt3 or Al(i‐Bu)3) and presence/absence of hydrogen and an external donor in the reaction mixture. These factors differ in their effects on catalytic activity at different polymerization temperatures, so the temperature coefficient (Eeff) values calculated using the Arrhenius dependence of the polymerization rate on polymerization temperature vary greatly. The “normal” Arrhenius plot where polymerization rate increases with temperature is observed only for polymerization with the Al(i‐Bu)3 cocatalyst in the presence of hydrogen and without an external donor. Formation of high‐molecular‐weight polyhexene at low polymerization temperatures results in catalyst particle fragmentation, which may additionally contribute to the increase in polymerization rate as polymerization temperature is reduced.  相似文献   

10.
The photophysical properties of three photoinitiators with a covalently linked thioxanthone sensitizer unit absorbing up to 410 nm were investigated by laser‐flash photolysis and CIDNP spectroscopy. These complementary techniques revealed two competing reaction pathways of the molecular dyads 1 – 3 : i) triplet‐energy transfer from the sensitizer to the morpholine moiety followed by α‐cleavage to yield a radical pair, which initiates radical polymerization, and ii) bimolecular electron transfer from the morpholine to the thioxanthone subunit followed by proton transfer. The relative efficiency of these routes is determined by the triplet energy of the photoinitiator moiety relative to that of the sensitizer.  相似文献   

11.
Radiation-induced polymerization of hydroxyethyl methacrylate (HEMA) and glycidyl methacrylate (GMA) was investigated. HEMA and GMA formed a stable supercooled or glassy phase by themselves at low temperatures. It was found that the initial polymerization rate was proportional to ca.0.5 power of the dose rate in the region of relatively high temperatures and the dose rate exponent changed sharply to 1.0 at a temperature Tr, at which the viscosity of monomeric systems reached ca. 103 cP as the temperature decreased. Moreover, a maximum in the polymerization rate–temperature curve occurred at Tv. It was deduced that the polymerization mechanism changed from the stationary to the nonstationary at Tv. The temperature at which a minimum of the polymerization rate occurred could be calculated kinetically considering the viscosity dependency of termination rate, and it agreed well with that obtained experimentally. It was deduced that occurrence of the minimum polymerization rate above Tv was attributable mainly to the decrease in termination rate due to diffusion control.  相似文献   

12.
The kinetics of propylene polymerization catalyzed over a superactive and stereospecific catalyst for the initial build-up period was investigated in slurry-phase. The catalyst was prepared from Mg(OEt)2/benzoyl chloride/TiCl4 co-activated with AlEt3 in the absence or presence of external donor. Despite a very fast activation of the prepared catalyst the acceleration stage of polymerization could be identified by the precise estimation of polymerization kinetics for a very short period of time after the commencement of polymerization (ca. 2 min). The initial polymerization rate, (dRp/dt)0 extrapolated to the beginning of the polymerization was second order with respect to monomer concentration. The dependence of initial polymerization rate on the concentration of AlEt3 could be represented by Langmuir adsorption mechanism. The initial rate was maximum at about Al/Ti ratio of 20. The activation energy for the initiation reaction was estimated to be 14.3 kcal/mol for a short-time polymerization. The addition of a small amount of p-ethoxy ethyl benzoate (PEEB) as an external donor increased the percentage of isotactic polymer, which was obtained after 120 s of polymerization, to 98% and the initial polymerization rate decreased sharply as [PEEB]/[AlEt3] increased. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
The quenching of polymerization with a chromium oxide catalyst by radioactive methanol 14CH3OH enables one to determine the concentration of propagation centers and then to calculate the rate constant of the propagation. The dependence of the concentration of propagation centers and the polymerization rate on reaction time, ethylene concentration, and temperature was investigated. The change of the concentration of propagation centers with the duration of polymerization was found to be responsible for the time dependence of the overall polymerization rate. The propagation reaction is of first order on ethylene concentration in the pressure range 2–25 kg/cm2. For catalysts of different composition, the temperature dependence of the overall polymerization rate and the propagation rate constant were determined, and the overall activation energy Eov and activation energy of the propagation state Ep were calculated. The difference between Eov and Ep is due to the change of the number of propagation centers with temperature. The variation of catalyst composition and preliminary reduction of the catalyst influence the shape of the temperature dependence of the propagation center concentration and change Eov.  相似文献   

14.
The reaction of peroxynitrite/peroxynitrous acid with morpholine as a model compound for secondary amines is reinvestigated in the absence and presence of carbon dioxide. The concentration‐ and pH‐dependent formation of N‐nitrosomorpholine and N‐nitromorpholine as reported in three previous papers ([25] [26] [14]) is basically confirmed. However, 13C‐NMR spectroscopic product analysis shows that, in the absence of CO2, N‐hydroxymorpholine is, at pH ≥ 7, the major product of this reaction, even under anaerobic conditions. The formation of N‐hydroxymorpholine has been overlooked in the three cited papers. Additional (ring‐opened) oxidation products of morpholine are also detected. The data account for radical pathways for the formation of these products via intermediate morpholine‐derived aminyl and α‐aminoalkyl radicals. This is further supported by EPR‐spectrometric detection of morpholine‐derived nitroxide radicals, i.e., morpholin‐4‐yloxy radicals. N‐Nitrosomorpholine, however, is very likely formed by electrophilic attack of peroxynitrite‐derived N2O4. 15N‐CIDNP Experiments establish that, in the presence of CO2, N‐nitro‐ and C‐nitromorpholine are generated by radical recombination. The present results are in full accord with a fractional (28 ± 2%) homolytic decay of peroxynitrite/peroxynitrous acid with release of free hydroxyl and nitrogen dioxide radicals.  相似文献   

15.
The title substances and their [1]benzothieno analogues were synthesized by reaction of 3-allyl-2-mercapto-([1]benzo)thieno-[2.3—d]pyrimidine-4(3H)-ones with Br2 to 2-bromomethyl-2.3-dihydro-thiazolo[3.2—a]([1]benzo-)thieno[2.3—d]pyrimidine-5-ones, which on treatment with morpholine did not give the corresponding morpholine derivatives but elimination to the exocyclic double bond. These 2-methylene-2.3-dihydro-products were isomerized by H2SO4 to the corresponding 2-methyl compounds.  相似文献   

16.
The title compound, [Sb(C11H14NO)3], is monomeric with the Sb atom located on a threefold axis. The complex exhibits distorted trigonal–antiprismatic geometry around the Sb atom, owing to the presence of intramolecular N→Sb interactions. H...phenyl intermolecular interactions lead to the formation of dimers stacked along the c axis. The morpholine rings exhibit almost ideal chair conformations. No intermolecular interactions between the morpholine rings of neighbouring molecules were observed.  相似文献   

17.
Lipase‐catalyzed ring‐opening bulk polymerizations of 6(S)‐methyl‐morpholine‐2,5‐dione (MMD) were investigated. Selected commercial lipases were screened as catalysts for MMD polymerization at 100 °C. Polymerizations catalyzed with 10 wt % porcine pancreatic lipase type II crude (PPL), lipase from Pseudomonas cepacia, and lipase type VII from Candida rugosa resulted in MMD conversions of about 75% in 3 days and in molecular weights ranging from 8200 to 12,100. Poly(6‐methyl‐morpholine‐2,5‐dione) [poly(MMD)] had a carboxylic acid group at one end and a hydroxyl group at the other end. However, lipase from Mucor javanicus showed lower catalytic activity for the polymerization. During the polymerization, racemization of the lactate residue took place. PPL was selected for further studies. The rate of polymerization increased with increasing PPL concentration under otherwise identical conditions. When the PPL concentration was 5 or 10 wt % with respect to MMD, a conversion of about 70% was reached after 6 days or 1 day, respectively, whereas for a PPL concentration of 1 wt %, the conversion was less than 20% even after 6 days. High concentrations of PPL (10 wt %) resulted in high number‐average molecular weights (<3 days); with a lower concentration of PPL, lower molecular weight poly(MMD) was obtained. The concentration of water was an important factor that controlled not only the conversion but also the molecular weight. With increasing water content, enhanced polymerization rates were achieved, whereas the molecular weight of poly(MMD) decreased. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3030–3039, 2005  相似文献   

18.
The effects of triphenyl phosphite (TPP) on the radical polymerization of styrene (St) and methyl methacrylate (MMA) initiated with α,α,-azobisisobutyronitrile (AIBN) was investigated at 50°C. The rate of polymerization of St and MMA at a constant concentration of TPP was found to be proportional to the monomer concentration and the square root of the initiator concentration. The rate of polymerization and the degree of polymerization of both St and MMA increased with increasing TPP concentration. The accelerating effect was shown to be due to the decrease of the termination rate constant kt with an increase in the viscosity of the polymerization systems. The chain transfer constant Ctr of TPP in St and MMA systems was determined from the degree of polymerization system. The Ctr of TPP was almost zero in the St system and 6.5 × 10?5 in the MMA system.  相似文献   

19.
In the title compound, {[Cu(C15H11ClN2O3)(C4H9NO)]n, the CuII cation has square‐pyramidal geometry. The morpholine ligand serves as a bridge to link two symmetry‐related metal atoms, resulting in an infinite chain structure along the a axis. Adjacent chains are extended into a two‐dimensional layered structure via hydrogen bonds formed between morpholine and amide N atoms [N—H...N = 2.971 (3) Å].  相似文献   

20.
The radiation-induced polymerization of glass-forming systems containing monomers has been investigated. It was found that irradiation below the second-order transition temperature Tg of the systems causes no in-source polymerization but causes a rapid postpolymerization on warming above the Tg after initial irradiation below the Tg. The post-polymerization was followed by differential thermal analysis and ESR spectra. It is caused above the Tg by the release of peroxy radicals trapped below the Tg, and its rate is proportional to the irradiation dose to some extent, often is explosively high, and brings about a remarkably large temperature rise by accumulation of polymerization heat. Irradiation above the Tg causes rapid in-source polymerization which is accelerated by the high viscosity of the monomeric system between Tg and Ts (WLF temperature) compared to crystal or ordinary solution polymerization. The temperature dependence of the in-source polymerization of glassy systems shows a peak between the Tg and Ts which may be the result of competing effects of the rate increase by the decreased termination near Ts and the rate decrease by the decreased propagation caused by the diffusion prevented near the Tg. The degree of polymerization was also investigated. The temperature dependence of the degree of polymerization of the polymers obtained by in-source polymerization shows a peak similar to that of the temperature dependence of conversion. Unusually large values of the Huggins constant k' are noted between Tg and Ts. The degree of polymerization of the polymer obtained by post-polymerized increases with the increase of irradiation dose and the polymerization rate; this may be the result of decreased chain transfer to nonpolymerizable components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号