首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Molecular docking techniques have now been widely used to predict the protein–ligand binding modes, especially when the structures of crystal complexes are not available. Most docking algorithms are able to effectively generate and rank a large number of probable binding poses. However, it is hard for them to accurately evaluate these poses and identify the most accurate binding structure. In this study, we first examined the performance of some docking programs, based on a testing set made of 15 crystal complexes with drug statins for the human 3‐hydroxy‐3‐methylglutaryl coenzyme A reductase (HMGR). We found that most of the top ranking HMGR–statin binding poses, predicted by the docking programs, were energetically unstable as revealed by the high theoretical‐level calculations, which were usually accompanied by the large deviations from the geometric parameters of the corresponding crystal binding structures. Subsequently, we proposed a new computational protocol, DOX, based on the joint use of molecular Docking, ONIOM, and eXtended ONIOM (XO) methods to predict the accurate binding structures for the protein–ligand complexes of interest. Our testing results demonstrate that the DOX protocol can efficiently predict accurate geometries for all 15 HMGR‐statin crystal complexes without exception. This study suggests a promising computational route, as an effective alternative to the experimental one, toward predicting the accurate binding structures, which is the prerequisite for all the deep understandings of the properties, functions, and mechanisms of the protein–ligand complexes. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
Determining the protein–protein interactions is still a major challenge for molecular biology. Docking protocols has come of age in predicting the structure of macromolecular complexes. However, they still lack accuracy to estimate the binding affinities, the thermodynamic quantity that drives the formation of a complex. Here, an updated version of the protein–protein ATTRACT force field aiming at predicting experimental binding affinities is reported. It has been designed on a dataset of 218 protein–protein complexes. The correlation between the experimental and predicted affinities reaches 0.6, outperforming most of the available protocols. Focusing on a subset of rigid and flexible complexes, the performance raises to 0.76 and 0.69, respectively. © 2017 Wiley Periodicals, Inc.  相似文献   

5.
Several methods have been proposed for protein–sugar binding site prediction using machine learning algorithms. However, they are not effective to learn various properties of binding site residues caused by various interactions between proteins and sugars. In this study, we classified sugars into acidic and nonacidic sugars and showed that their binding sites have different amino acid occurrence frequencies. By using this result, we developed sugar-binding residue predictors dedicated to the two classes of sugars: an acid sugar binding predictor and a nonacidic sugar binding predictor. We also developed a combination predictor which combines the results of the two predictors. We showed that when a sugar is known to be an acidic sugar, the acidic sugar binding predictor achieves the best performance, and showed that when a sugar is known to be a nonacidic sugar or is not known to be either of the two classes, the combination predictor achieves the best performance. Our method uses only amino acid sequences for prediction. Support vector machine was used as a machine learning algorithm and the position-specific scoring matrix created by the position-specific iterative basic local alignment search tool was used as the feature vector. We evaluated the performance of the predictors using five-fold cross-validation. We have launched our system, as an open source freeware tool on the GitHub repository (https://doi.org/10.5281/zenodo.61513).  相似文献   

6.
Machine learning methods have always been promising in the science and engineering fields, and the use of these methods in chemistry and drug design has advanced especially since the 1990s. In this study, molecular electrostatic potential (MEP) surfaces of phencyclidine‐like (PCP‐like) compounds are modeled and visualized in order to extract features that are useful in predicting binding affinities. In modeling, the Cartesian coordinates of MEP surface points are mapped onto a spherical self‐organizing map (SSOM). The resulting maps are visualized using electrostatic potential (ESP) values. These values also provide features for a prediction system. Support vector machines and partial least‐squares method are used for predicting binding affinities of compounds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
本文应用一种组合遗传算法和共轭梯度法的支持向量机(GA-CG-SVM)方法建立了药物诱导磷脂质病分类预测模型.首先对描述符进行了优化,选出了19个描述符用于模型的构建,所建模型对训练集的预测准确率为81.6%,对测试集的预测精度为87.5%,说明所建SVM分类模型不仅能正确预测训练集药物诱导的磷脂质病,也对其他化合物具...  相似文献   

8.
A systematic semiempirical quantum mechanical study of the interactions between proteins and ligands has been performed to determine the ability of this approach for the accurate estimation of the enthalpic contribution to the binding free energy of the protein–ligand systems. This approach has been applied for eight test protein–ligand complexes with experimentally known binding enthalpies. The calculations were performed using the semiempirical PM3 approach incorporated in the MOPAC 97, ZAVA originally elaborated in Algodign, and MOPAC 2002 with MOZYME facility packages. Special attention was paid to take into account structural water molecules, which were located in the protein–ligand binding site. It was shown that the results of binding enthalpy calculations fit experimental data within ~2 kcal/mol in the presented approach. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

9.
张纪阳  张代兵  张伟  谢红卫 《色谱》2012,30(9):857-863
基于质谱的大规模蛋白质鉴定中,在线液相色谱分离发挥了重要作用。色谱保留时间(retention time,RT)是肽段鉴定和定量的重要信息。由于整个色谱分析运行时间中,流动相中的有机相采用了非线性浓度曲线以及样品中肽段之间的相互影响等因素,基于肽段序列的RT预测还存在精度不高、模型推广性能差等问题。本文提出了一种基于串并联支持向量机(serial and parallel support vector machine,SP-SVM)的RT预测方法,能够表征洗脱过程中有机相浓度的非线性变化和肽段之间的相互影响,显著提高了肽段保留时间预测的精度。利用复杂样本数据集验证结果表明,预测RT和实验RT之间的决定系数达到了0.95,超过95%的鉴定肽段的RT预测误差范围小于总运行时间的20%,超过70%的鉴定肽段的RT预测误差范围小于总运行时间的10%。本文提出的模型的性能达到了目前已知的最好水平。  相似文献   

10.
Molecular dynamics simulation in explicit water for the binding of the benchmark barnase‐barstar complex was carried out to investigate the effect polarization of interprotein hydrogen bonds on its binding free energy. Our study is based on the AMBER force field but with polarized atomic charges derived from fragment quantum mechanical calculation for the protein complex. The quantum‐derived atomic charges include the effect of polarization of interprotein hydrogen bonds, which was absent in the standard force fields that were used in previous theoretical calculations of barnase‐barstar binding energy. This study shows that this polarization effect impacts both the static (electronic) and dynamic interprotein electrostatic interactions and significantly lowers the free energy of the barnase‐barstar complex. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Understanding the interactions between proteins and ligands is critical for protein function annotations and drug discovery. We report a new sequence‐based template‐free predictor (TargetATPsite) to identify the Adenosine‐5′‐triphosphate (ATP) binding sites with machine‐learning approaches. Two steps are implemented in TargetATPsite: binding residues and pockets predictions, respectively. To predict the binding residues, a novel image sparse representation technique is proposed to encode residue evolution information treated as the input features. An ensemble classifier constructed based on support vector machines (SVM) from multiple random under‐samplings is used as the prediction model, which is effective for dealing with imbalance phenomenon between the positive and negative training samples. Compared with the existing ATP‐specific sequence‐based predictors, TargetATPsite is featured by the second step of possessing the capability of further identifying the binding pockets from the predicted binding residues through a spatial clustering algorithm. Experimental results on three benchmark datasets demonstrate the efficacy of TargetATPsite. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
13.
In the field of drug discovery, it is important to accurately predict the binding affinities between target proteins and drug applicant molecules. Many of the computational methods available for evaluating binding affinities have adopted molecular mechanics‐based force fields, although they cannot fully describe protein–ligand interactions. A noteworthy computational method in development involves large‐scale electronic structure calculations. Fragment molecular orbital (FMO) method, which is one of such large‐scale calculation techniques, is applied in this study for calculating the binding energies between proteins and ligands. By testing the effects of specific FMO calculation conditions (including fragmentation size, basis sets, electron correlation, exchange‐correlation functionals, and solvation effects) on the binding energies of the FK506‐binding protein and 10 ligand complex molecule, we have found that the standard FMO calculation condition, FMO2‐MP2/6‐31G(d), is suitable for evaluating the protein–ligand interactions. The correlation coefficient between the binding energies calculated with this FMO calculation condition and experimental values is determined to be R = 0.77. Based on these results, we also propose a practical scheme for predicting binding affinities by combining the FMO method with the quantitative structure–activity relationship (QSAR) model. The results of this combined method can be directly compared with experimental binding affinities. The FMO and QSAR combined scheme shows a higher correlation with experimental data (R = 0.91). Furthermore, we propose an acceleration scheme for the binding energy calculations using a multilayer FMO method focusing on the protein–ligand interaction distance. Our acceleration scheme, which uses FMO2‐HF/STO‐3G:MP2/6‐31G(d) at Rint = 7.0 Å, reduces computational costs, while maintaining accuracy in the evaluation of binding energy. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
15.
The temperature‐responsive poly (N, N‐diethylacrylamide) (pDEAAm) with narrower molecular weight distribution was prepared by the atom transfer radical polymerization and characterized by 1HNMR and gel permeation chromatography. The temperature‐responsive “tadpole‐shaped” BSA–pDEAAm hybrids were fabricated via a free Cys‐34 residue of bovine serum albumin (BSA) site specifically binding to the end group disulfide bonds of pDEAAm and characterized by native‐polyacrylamide gel electrophoresis (Native‐PAGE) and matrix‐assisted laser desorption/ionization time of flight mass spectrometry. Their temperature‐responsive behaviors were measured by ultraviolet‐visible spectra (UV‐Vis). The lower critical solution temperature (LCST) of the pDEAAm was identified as 28°C, and the LCST of BSA–pDEAAm hybrids was identified as 31°C. The morphologies of BSA–pDEAAm hybrids self‐assembled in the aqueous solutions with two different temperatures at 25 °C and 40°C were investigated by transmission electron microscopy. Below the LCST of BSA–pDEAAm hybrids, the separate spherical nanoparticles were observed. In contrast, bundles and clusters were observed above the LCST of BSA–pDEAAm hybrids. The results suggested that the self‐assembly morphology of BSA–pDEAAm hybrids depended upon the pDEAAm block in BSA–pDEAAm hybrids, and the morphology transitions were effected by the LCST of BSA–pDEAAm hybrids. It would be expected to be used in biomedicine and materials science. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
The electrostatically embedded generalized molecular fractionation with conjugate caps (EE‐GMFCC) method has been successfully utilized for efficient linear‐scaling quantum mechanical (QM) calculation of protein energies. In this work, we applied the EE‐GMFCC method for calculation of binding affinity of Endonuclease colicin–immunity protein complex. The binding free energy changes between the wild‐type and mutants of the complex calculated by EE‐GMFCC are in good agreement with experimental results. The correlation coefficient (R) between the predicted binding energy changes and experimental values is 0.906 at the B3LYP/6‐31G*‐D level, based on the snapshot whose binding affinity is closest to the average result from the molecular mechanics/Poisson–Boltzmann surface area (MM/PBSA) calculation. The inclusion of the QM effects is important for accurate prediction of protein–protein binding affinities. Moreover, the self‐consistent calculation of PB solvation energy is required for accurate calculations of protein–protein binding free energies. This study demonstrates that the EE‐GMFCC method is capable of providing reliable prediction of relative binding affinities for protein–protein complexes. © 2018 Wiley Periodicals, Inc.  相似文献   

17.
Lysine 2-hydroxyisobutyrylation (Khib) is a new type of histone mark, which has been found to affect the association between histone and DNA. To better understand the molecular mechanism of Khib, it is important to identify 2-hydroxyisobutyrylated substrates and their corresponding Khib sites accurately. In this study, a novel bioinformatics tool named KhibPred is proposed to predict Khib sites in human HeLa cells. Three kinds of effective features, the composition of k-spaced amino acid pairs, binary encoding and amino acid factors, are incorporated to encode Khib sites. Moreover, an ensemble support vector machine is employed to overcome the imbalanced problem in the prediction. As illustrated by 10-fold cross-validation, the performance of KhibPred achieves a satisfactory performance with an area under receiver operating characteristic curve of 0.7937. Therefore, KhibPred can be a useful tool for predicting protein Khib sites. Feature analysis shows that the polarity factor features play significant roles in the prediction of Khib sites. The conclusions derived from this study might provide useful insights for in-depth investigation into the molecular mechanisms of Khib.  相似文献   

18.
We have developed a two‐dimensional replica‐exchange method for the prediction of protein–ligand binding structures. The first dimension is the umbrella sampling along the reaction coordinate, which is the distance between a protein binding pocket and a ligand. The second dimension is the solute tempering, in which the interaction between a ligand and a protein and water is weakened. The second dimension is introduced to make a ligand follow the umbrella potential more easily and enhance the binding events, which should improve the sampling efficiency. As test cases, we applied our method to two protein‐ligand complex systems (MDM2 and HSP 90‐alpha). Starting from the configuration in which the protein and the ligand are far away from each other in each system, our method predicted the ligand binding structures in excellent agreement with the experimental data from Protein Data Bank much faster with the improved sampling efficiency than the replica‐exchange umbrella sampling method that we have previously developed. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
The Biomolecular Ligand Energy Evaluation Protocol (BLEEP) is a knowledge‐based potential derived from high‐resolution X‐ray structures of protein–ligand complexes. The performance of this potential in ranking the hypothetical structures resulting from a docking study has been evaluated using fifteen protein–ligand complexes from the Protein Data Bank. In the majority of complexes BLEEP was successful in identifying the native (experimental) binding mode or an alternative of low rms deviation (from the native) as the lowest in energy. Overall BLEEP is slightly better than the DOCK energy function in discriminating native‐like modes. Even when alternative binding modes rank lower than the native structure, a reasonable energy is assigned to the latter. Breaking down the BLEEP scores into the atom–atom contributions reveals that this type of potential is grossly dominated by longer range interactions (>5 Å), which makes it relatively insensitive to small local variations in the binding site. However, despite this limitation, the lack, at present, of accurate protein–ligand potentials means that BLEEP is a promising approach to improve the filtering of structures resulting from docking programs. Moreover, BLEEP should improve with the continuously increasing number of complexes available in the PDB. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 673–688, 2001  相似文献   

20.
In this work, a list of volatile organic compounds (VOCs) that are associated with targets susceptible to versatile security issues – such as drug trafficking, explosives carrying, or human presence in forbidden areas – are monitored and discriminated through algorithmic processing of their midinfrared (MIR) spectroscopic properties. Usually, such tasks are relatively straightforward by identifying the absorption peaks of the investigated compounds in extended spectral recordings, from a few hundred up to many thousands of wavenumbers (cm−1). Nevertheless, the physical mechanisms and instrumentation for obtaining so broad spectral profiles may prove to be complex, especially in field measurements, while data acquisition and processing may also prove to be time‐consuming. In the proposed approach, support vector machine algorithmic training is applied in order to evaluate the potential of exploiting very narrow spectral MIR absorption bands that are optimal for reliable prediction analysis and training. The probabilistic classification performance of these bands is evaluated and compared with the prediction performance when using wider MIR absorption spectra. Depending on the data set and the list of the associated VOCs, spectral data recording within a span up to several tens of wavenumbers – at regions where absorption is detectable – prove to be enough for efficient VOC classification. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号