首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon nanotubes (CNTs) have been shown to modify some properties of nanomaterials and to modify chemical reactions confined inside their channels, which are formed by curved graphene layers. Here we studied ammonia synthesis over Ru as a probe reaction to understand the effect of the electron structure of CNTs on the confined metal particles and their catalytic activity. The catalyst with Ru nanoparticles dispersed almost exclusively on the exterior nanotube surface exhibits a higher activity than the CNT‐confined Ru, although both have a similar metal particle size. Characterization with TEM, N2 physisorption, H2 chemisorption, temperature‐programmed reduction, CO adsorption microcalorimetry, and first‐principles calculations suggests that the outside Ru exhibits a higher electron density than the inside Ru. As a result, the dissociative adsorption of N2, which is an electrophilic process and the rate‐determining step of ammonia synthesis, is more facile over the outside Ru than that over the inside one.  相似文献   

2.
We evaluated the accuracy of periodic density functional calculations for adsorption enthalpies of water, alkanes, and alcohols in silicalite and HZSM‐5 zeolites using a gradient‐corrected density functional with empirical dispersion corrections (PBE‐D) as well as a nonlocal correlation functional (vdW‐DF2). Results of both approaches agree in acceptable fashion with experimental adsorption energies of alcohols in silicalite, but the adsorption energies for n‐alkanes in both zeolite models are overestimated, by 21?46 kJ mol?1. For PBE‐D calculations, the adsorption of alkanes is exclusively determined by the empirical dispersion term, while the generalized gradient approximation‐DFT part is purely repulsive, preventing the molecule to come too close to the zeolite walls. The vdW‐DF2 results are comparable to those of PBE‐D calculations, but the latter values are slightly closer to the experiment in most cases. Thus, both computational approaches are unable to reproduce available experimental adsorption energies of alkanes in silicalite and HZSM‐5 zeolite with chemical accuracy. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
The behavior of water molecules inside and outside 1.1, 2.8, 6.9, and 10.4 nm diameter armchair carbon nanotubes (CNTs) is predicted using molecular dynamics simulations. The effects of CNT diameter on mass density, molecular distribution, and molecular orientation are identified for both the confined and unconfined fluids. Within 1 nm of the CNT surface, unconfined water molecules assume a spatially varying density profile. The molecules distribute nonuniformly around the carbon surface and have preferred orientations. The behavior of the unconfined water molecules is invariant with CNT diameter. The behavior of the confined water, however, can be correlated to tube diameter. Inside the 10.4 nm CNT, the molecular behavior is indistinguishable from that of the unconfined fluid. Within the smaller CNTs, surface curvature effects reduce the equilibrium water density and force water molecules away from the surface. This effect changes both the molecular distribution and preferred molecular orientations.  相似文献   

4.
Density functional theory (DFT) calculations are performed to analyze curvature effects in the oxidative longitudinal unzipping of carbon nanotubes (CNTs) of different diameters. The reactions considered involve the adsorption of permanganate, followed by the oxidation of the nanotube, which results in dione and hole formation. The study was performed with armchair CNTs of different diameters and with corrugated graphene layers, which emulate the curvature of CNT of larger radii, with the finding that the curvature and the pyramidalization angle of the these structures strongly affects the stability of the intermediate dione structure formed during the unzipping process. Permanganate adsorption energies increase for more curved surfaces promoting the oxidation reaction in surfaces of small radius, making this reaction spontaneous for small radius. The second permanganate adsorbs on the parallel carbon–carbon bond to first diona formation resulting the longitudinal unzipping of the CNT.  相似文献   

5.
崔超婕  骞伟中  魏飞 《物理化学学报》2011,27(10):2462-2468
对水促进Co/Mo/Al2O3催化剂裂解乙烯生长碳纳米管(CNTs)的研究发现,通入体积分数(φ)为0.6%的水蒸汽在1h内可将CNTs的生长倍率从3.7 g·g-1提高至70 g·g-1.水的作用在于恢复被无定形碳包覆的催化剂颗粒的活性,水的加入量由于其积碳(促进同体碳生成)和消碳(去除固体碳)的竞争作用而存在最佳值.不同反应时间下乙烯的转化率与有效催化剂含量的分析表明,在CNTs生长后期,水的催化促进作用减弱.将催化剂的相对活性与CNT聚团的相对密度关联发现,反应后期的CNTs主要在聚团内部缠绕生长,催化剂被包覆失活.拉曼测试与差热热重分析表明,生长阻力导致所得CNTs缺陷增多,CNT聚团密度变化与CNT缺陷间存在对应关系.聚团内外CNTs的生长阻力不同,生长倍率不同,导致产品纯度不均匀.  相似文献   

6.
We report the tuning of the redox properties of iron and iron oxide nanoparticles by encapsulation within carbon nanotubes (CNTs) with varying inner diameters. Raman spectroscopy was employed to investigate the interaction of the encapsulated nanoparticles with the CNTs. A red shift of the Fe-O mode is observed in the nanoparticles deposited on the outer CNT surfaces with respect to bulk Fe2O3. However, this mode is found to be stepwise blue-shifted with decreasing inner diameter in the CNT-encapsulated Fe2O3 nanoparticles, suggesting an enhanced interaction of Fe2O3 with the inner CNT surface as its curvature increases. The autoreduction of the encapsulated Fe2O3 is significantly facilitated inside CNTs with respect to the outside nanoparticles. Interestingly, it becomes more facile with decreasing CNT channel diameter as evidenced by temperature programmed reaction, in situ XRD, and Raman spectroscopy. The oxidation of encapsulated metallic Fe nanoparticles on the other hand is retarded in comparison to that of the outside Fe particles as shown by in situ XRD and gravimetrical measurements with an online microbalance. We attribute this tunable redox behavior of transition metal nanoparticles inside CNTs to a particular electronic interaction of the encapsulates with the interior CNT surface, which stabilizes the metallic state of Fe.  相似文献   

7.
In this work, geometries, stabilities, and electronic properties of the carbon monoxide (CO) molecule as an adsorbent in a simple carbon nanotube (CNT) and nitrogen (N), boron (B), sulfur (S)-doped CNTs (NCNT, BCNT, and SCNT) with parallel and perpendicular configurations are fully considered using ONIOM, natural bond orbital, and quantum theory of atom in molecule (QTAIM) calculations. The adsorption energies (Ead) demonstrate that a CO molecule could be adsorbed on the surface of the simple CNT with parallel configuration and N-doped CNT with perpendicular configuration in an exothermic process. QTAIM calculations showed the close-shell (noncovalent) interactions between the CO molecule and CNT or N, B, S-doped CNTs. In addition, the energy gap (Eg) values between the highest occupied molecular orbital and the lowest unoccupied molecular orbital are calculated. In accordance with the results of energy gap, simple and N-doped CNTs could be used as CO sensors.  相似文献   

8.
Carbon nanomaterials are advantageous for electrochemical sensors because they increase the electroactive surface area, enhance electron transfer, and promote adsorption of molecules. Carbon nanotubes (CNTs) have been incorporated into electrochemical sensors for biomolecules and strategies have included the traditional dip coating and drop casting methods, direct growth of CNTs on electrodes and the use of CNT fibers and yarns made exclusively of CNTs. Recent research has also focused on utilizing many new types of carbon nanomaterials beyond CNTs. Forms of graphene are now increasingly popular for sensors including reduced graphene oxide, carbon nanohorns, graphene nanofoams, graphene nanorods, and graphene nanoflowers. In this review, we compare different carbon nanomaterial strategies for creating electrochemical sensors for biomolecules. Analytes covered include neurotransmitters and neurochemicals, such as dopamine, ascorbic acid, and serotonin; hydrogen peroxide; proteins, such as biomarkers; and DNA. The review also addresses enzyme-based electrodes that are used to detect non-electroactive species such as glucose, alcohols, and proteins. Finally, we analyze some of the future directions for the field, pointing out gaps in fundamental understanding of electron transfer to carbon nanomaterials and the need for more practical implementation of sensors.  相似文献   

9.
The effect of carbon nanotubes’ (CNT) crystal structure on chemical reactivity has been studied in much detail in the liquid phase using CNT suspension. This type of information is pertinent for developing CNT separation strategies. However, few experimental studies are available providing data for gas–CNT interactions utilizing ultra-high vacuum (UHV) surface science techniques. Structure–activity relationships (SAR) for gas–surface interactions are important for sensor designs and heterogeneous catalysis exploring, for example, CNT’s potential as a support for fuel cell catalysts. We report on UHV kinetics experiments with single-wall metallic, semiconducting, and mixed CNTs in order to provide the experimental basis to correlate CNT’s crystal structure and chemical activity. Thermal desorption spectroscopy (TDS), a simple temperature ramping technique, has been used to determine the binding energies of a number of probe molecules including alkanes, alcohols, thiophene, benzene, and water on CNTs at UHV conditions. TDS allows for the identification of adsorption sites of probe molecules in CNT bundles, using gold foil or silica as a support for the drop-and-dry technique. A weak and probe molecule dependent SAR is present for adsorption inside the CNTs but not for the population of external sites by the probe molecules. The experimental data are in part consistent with current theoretical predictions by other groups. In addition, the effect of different solvents (methanol, SDS, and NMP) and cleaning procedures will briefly be discussed using results of spectroscopic (Auger electron spectroscopy) and kinetic techniques. Furthermore, molecular beam scattering techniques were utilized to characterize the adsorption dynamics, i.e., the gas-to-surface energy transfer processes of alkanes on CNTs. For example, opening the CNT tube ends by high temperature annealing, increases the so-called initial adsorption probability, that is, the probability for adsorption in the limit of zero surface concentration (coverage). This result directly illustrates the effect of large surface areas of CNTs, using internal and external surfaces, for gas adsorption.  相似文献   

10.
PBEPBE‐D3 calculations were performed to investigate how platinum (Pt) interacts with the internal and external surfaces of single‐walled pristine, Si‐, Ge‐, and Sn‐doped (6,6) carbon nanotubes (CNTs). Our calculations showed that atomic Pt demonstrates stronger binding strength on the external surfaces than the internal surface adsorption for the same type of nanotube. In cases of external surface adsorptions, Si‐, Ge‐, and Sn‐doped CNTs show comparable binding energies for Pt, at least 1.40 eV larger than pristine CNT. This enhancement can be rationalized by the strong covalent interactions between Pt and X? C (X = Si, Ge, and Sn) pairs based on structural and projected density of states analysis. In terms of internal surface adsorptions, Ge and Sn doping could significantly enhance the binding of Pt. Pt atom shows much more delocalized and bonding states inside Ge‐ and Sn‐doped CNTs, indicating multiple‐site interaction pattern when atomic Pt is confined inside the nanotubes. However, the internal surface of Si‐doped CNT presents limited enhancement in Pt adsorption with respect to that of pristine CNT because of their similar binding geometries. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
The systems of open-ended carbon nanotubes (CNTs) immersed in methanol-water solution are studied by molecular dynamics simulations. For the (6,6) CNT, nearly pure methanol is found to preferentially occupy interior space of the CNT. Even when the mass fraction (MF) of methanol in bulk solution is as low as 1%, the methanol MF within the CNT is still more than 90%. For CNTs with larger diameters, the methanol concentrations within CNTs are also much higher than those outside CNTs. The methanol selectivity decreases with increasing CNT diameter, but not monotonically. From microscopic structural analyses, we find that the primary reason for the high selectivity of methanol by CNTs lies on high preference of methanol in the first solvation shell near the inner wall of CNT, which stems from a synergy effect of the van der Waals interaction between CNT and the methyl groups of methanol, together with the hydrogen bonding interaction among the liquid molecules. This synergy effect may be of general significance and extended to other systems, such as ethanol aqueous solution and methanol/ethanol mixture. The selective adsorption of methanol over water in CNTs may find applications in separation of water and methanol, detection of methanol, and preservation of methanol purity in fuel cells.  相似文献   

12.
We use molecular dynamics (MD) simulations to study the transport of single-file water molecules through carbon nanotubes (CNTs) with various lengths in an electric field. Most importantly, we find that even the water dipoles inside the CNT are maintained along the field direction, a large amount of water molecules can still transport against the field direction for short CNTs, leading to a low unidirectional transport efficiency (η). As the CNT length increases, the efficiency η will increase remarkably, and achieves the maximum value of 1.0 at or exceeding a critical CNT length. Consequently, the transition from bidirectional to unidirectional transport is observed and is found to be relevant to thermal fluctuations of the two reservoirs, which is explored by the interaction between water molecules inside and outside the CNT. We also find that the water flow vs CNT length follows an exponential decay of f ~ exp?(- L/L(0)), and the average translocation time of individual water molecules yields to a power law of τ(trans) ~ L(υ), where L(0) and ν are constant and slightly depend on the field strength. We further compare our results with the continuous-time random-walk (CTRW) model and find that the water flow can also be described by a power law of f ~ L(-μ) modified from CTRW. Our results provide some new physical insights into the biased transport of single-file water molecules, which show the feasibility of using CNTs with any length to pump water in an electric field. The mechanism is important for designing efficient nanofluidic apparatuses.  相似文献   

13.
The interaction of a carbon nanotube (CNT) with various aromatic molecules, such as aniline, benzophenone, and diphenylamine, was studied using density functional theory able to compute intermolecular weak interactions (B3LYP-D3). CNTs of varying lengths were used, such as 4-CNT, 6-CNT, and 8-CNT (the numbers denoting relative lengths), with the lengths being chosen appropriately to save computation times. All aromatic molecules were found to exhibit strong intermolecular binding energies with the inner surface of the CNT, rather than the outer surface. Hydrogen bonding between two aromatic molecules that include N and O atoms is shown to further stabilize the intermolecular adsorption process. Therefore, when benzophenone and diphenylamine were simultaneously allowed to interact with a CNT, the aromatic molecules were expected to preferably enter the CNT. Furthermore, additional calculations of the intermolecular adsorption energy for aniline adsorbed on a graphene surface showed that the concavity of graphene-like carbon sheet is in proportion to the intermolecular binding energy between the graphene-like carbon sheet and the aromatic molecule.  相似文献   

14.
A one‐pot/one‐step synthesis strategy was developed for the preparation of a nitrogen‐doped carbon nanoarchitecture with graphene‐nanosheet growth on the inner surface of carbon nanotubes (CNTs). The N‐graphene/CNT hybrids exhibit outstanding electrocatalytic activity for several important electrochemical reactions as a result of their unique morphology and defect structures, such as high but uniform nitrogen doping, graphene insertion into CNTs, considerable surface area, and the presence of iron nanoparticles. The high‐yield synthetic process features high efficiency, low‐cost, straightforward operation, and simple equipment.  相似文献   

15.
Addition of carboxyalkyl radicals to carbon nanotube (CNT) graphene surface is a non-destructive to nanotube framework method of sidewall functionalization of CNTs with the carboxylic group terminated moieties. Fluorination activates the CNT surface towards addition reactions due to transformation of the graphene aromatic structure to a more chemically reactive polyene ??-system structure of fluoronanotubes. As a result, the sidewall addition reactions to fluoronanotubes are completed in a much shorter time spans than in the case of pristine CNTs. Carboxyalkyl CNT derivatives prepared by this method form stable suspensions in water and polar organic solvents. This enables their applications in biomedical research; for the preparation of water-based paints, inks, and coatings; and for processing and fabrication of nanocomposites.  相似文献   

16.
Single‐ and double‐wall carbon nanotubes (CNTs) having dimethylanilino (DMA) units covalently attached to the external graphene wall have been prepared by the reaction of the dimethylaminophenylnitronium ion with the corresponding CNT. The samples have been characterized by Raman and XPS spectroscopies, thermogravimetry, and high‐resolution transmission electron microscopy in which the integrity of the single or double wall of the CNT and the percentage of substitution (one dimethylanilino group every 45 carbons of the wall for the single‐ and double‐wall samples) has been determined. Nanosecond laser flash photolysis has shown the generation of transients that has been derived from the charge transfer between the dimethylanilino (as the electron donor) to the CNT graphene wall (as the electron acceptor). Importantly, the lifetime of the double‐wall CNT is much shorter than that monitored for the single‐wall CNT. Shorter‐lived transients were also observed for the pentyl‐esterified functionalized double‐wall CNT with respect to the single‐wall analogue in the presence of hole (CH3OH) and electron quenchers (O2, N2O), which has led to the conclusion that the inner, intact graphene wall that is present in double‐wall CNT increases the charge mobility significantly, favoring charge recombination processes. Considering the importance that charge mobility has in microelectronics, our finding suggests that double‐wall CNT or two‐layer graphene may be more appropriate to develop devices needing fast charge mobility.  相似文献   

17.
A one‐pot/one‐step synthesis strategy was developed for the preparation of a nitrogen‐doped carbon nanoarchitecture with graphene‐nanosheet growth on the inner surface of carbon nanotubes (CNTs). The N‐graphene/CNT hybrids exhibit outstanding electrocatalytic activity for several important electrochemical reactions as a result of their unique morphology and defect structures, such as high but uniform nitrogen doping, graphene insertion into CNTs, considerable surface area, and the presence of iron nanoparticles. The high‐yield synthetic process features high efficiency, low‐cost, straightforward operation, and simple equipment.  相似文献   

18.
The potential for the material property improvement through the addition of carbon nanotubes (CNTs) in composite materials is often limited due to CNT agglomeration. In this work, Disperse Orange 3 (DO3) was investigated to determine its effectiveness in dispersing CNTs in a poly (lactic acid) (PLA) matrix. First, adsorption studies of DO3 onto CNTs were performed to determine the appropriate amount of DO3 to add so that the CNT surface will be nearly saturated with DO3 while limiting the excess DO3 dissolved in the polymer. The resultant improvements in the mechanical properties were determined via nanoindentation. Highly stable dispersion of CNTs in tetrahydrofuran with DO3 was observed 72 hours after sonication. Scanning electron microscopy confirmed that DO3‐functionalized CNTs were able to separate and disperse well inside of the PLA matrix. Addition of DO3 to the nanocomposite resulted in an increase in the glass transition temperature and crystallinity of the composite due to the more effective dispersion of the nanofiller which serves as a nucleation agent. The CNTs treated with DO3 also increased the elastic modulus and hardness of the composite compared to neat PLA and untreated PLA‐CNT composites. From this study, DO3 was demonstrated to be an effective dispersing agent in the solvent and the PLA matrix which allowed for enhanced crystallization and improved nanomechanical properties in the resultant composite.  相似文献   

19.
Molecular dynamics (MD) simulations are performed to study the structure and adsorption of ethanol/water mixture within carbon nanotubes (CNTs). Inside the (6,6) and (10,10) CNTs, there are always almost full of ethanol molecules and hardly water molecules. Inside wider CNTs, there are some water molecules, while the ethanol mass fractions inside the CNTs are still much higher than the corresponding bulk values. A series of structural analysis for the molecules inside and outside the CNTs are performed, including the distributions of radial, axial, angular density, orientation, and the number of hydrogen bonds. The angular density distribution of the molecules in the first solvation shell outside the CNTs indicates that the methyl groups of ethanol molecules have the strongest interaction with the carbon wall, and are pinned to the centers of the hexagons of the CNTs. Based on the understanding of the microscopic mechanism of these phenomena, we propose that the CNTs prefer to contain ethanol rather than methanol.  相似文献   

20.
《Analytical letters》2012,45(2):379-393
Adsorptions of dimethyl phthalate (DMP) on carbon nanotubes (CNTs) in aqueous phase at various pH and temperatures were studied. The increase in pH results in the increase in adsorption coefficient. The adsorption is governed by the π-π electron interaction which is affected by the changes in pH of the medium. The outer diameter of the CNTs greatly influences the adsorption behavior of CNT for DMP. Under the same working temperature, the adsorption capacity of CNTs for DMP is inversely related to the average outer diameter of the CNT: single-walled SWCNT (1.4 nm)>multi-walled MWCNT10 (9.4 nm)>MWCNT30 (27.8 nm)>MWCNT40 (42.7 nm). The larger surface area of CNTs provides many active sites for adsorption of DMP molecules. The Freundlich model can describe well the adsorption isotherms of DMP on CNTs. The thermodynamic parameters of standard free energy, standard enthalpy (ΔH), and standard entropy changes are determined, showing that the adsorption of DMP on CNTs is an endothermic and spontaneous reaction. The ΔH value of 27.8 nm-sized MWCNT (22.69 kJ/mol) is higher than 1.4 nm-sized SWCNT (6.05 kJ/mol), inferring that the adsorption process becomes more endothermic with the increase in the outer diameter of CNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号