首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intermolecular interactions in the dimers of m‐nisoldipine polymorphism were studied by B3LYP calculations and quantum theory of "atoms in molecules" (QTAIM) studies. Four geometries of dimers were obtained: dimer I (a‐dimer, O···H? N), dimer II (b‐dimer, O···H? N), dimer III (b‐dimer, π‐stacking‐c), and dimer IV (b‐dimer, π‐stacking‐p). The interaction energies of the four dimers are along the sequence of II>I>III>IV. The intermolecular distance of the interactions follows the order: I (O···H? N)II>III>IV, and the electrostatic character decreases along the sequence: I>II>III>IV.  相似文献   

2.
We have investigated the performance of the dispersion-corrected density functionals (BLYP-D, BP86-D and PBE-D) and the widely used B3LYP functional for describing the hydrogen bonds and the stacking interactions in DNA base dimers. For the gas-phase situation, the bonding energies have been compared to the best ab initio results available in the literature. All dispersion-corrected functionals reproduce well the ab initio results, whereas B3LYP fails completely for the stacked systems. The use of the proper functional leads us to find minima for the adenine quartets, which are energetically and structurally very different from the C4h structures, and might explain why adenine has to be sandwiched between guanine quartets to form planar adenine quartets.  相似文献   

3.
4.
Nonempirically tuned hybrid density functionals with range‐separated exchange are applied to calculations of the first hyperpolarizability (β) and charge‐transfer (CT) excitations of linear “push–pull” donor–acceptor‐substituted organic molecules with extended π‐conjugated bridges. An unphysical delocalization with increasing chain length in density functional calculations can be reduced significantly by enforcing an asymptotically correct exchange‐correlation potential adjusted to give frontier orbital energies representing ionization potentials. The delocalization error for a number of donor–acceptor systems is quantified by calculations with fractional electron numbers and from orbital localizations. Optimally tuned hybrid variants of the PBE functional incorporating range‐separated exchange can produce similar magnitudes for β as Møller–Plesset second‐order perturbation (MP2) correlated calculations. Improvements are also found for CT excitation energies, with results similar to an approximate coupled‐cluster model (CC2).  相似文献   

5.
6.
The conformations of gas-phase ions of hemoglobin, and its dimer and monomer subunits have been studied with H/D exchange and cross section measurements. During the H/D exchange measurements, tetramers undergo slow dissociation to dimers, and dimers to monomers, but this did not prevent drawing conclusions about the relative exchange levels of monomers, dimers, and tetramers. Assembly of the monomers into tetramers, hexamers, and octamers causes the monomers to exchange a greater fraction of their hydrogens. Dimer ions, however, exchange a lower fraction of their hydrogens than monomers or tetramers. Solvation of tetramers affects the exchange kinetics. Solvation molecules do not appear to exchange, and solvation lowers the overall exchange level of the tetramers. Cross section measurements show that monomer ions in low charge states, and tetramer ions have compact structures, comparable in size to the native conformations in solution. Dimers have remarkably compact structures, considerably smaller than the native conformation in solution and smaller than might be expected from the monomer or tetramer cross sections. This is consistent with the relatively low level of exchange of the dimers.  相似文献   

7.
The structural and electronic properties of perylene molecule, dimers, and excimers have been computationally studied. The present work represents the first systematic study of perylene molecule and dimer forms by means of long‐range corrected time‐dependent density functional theory (TDDFT) approaches. Initially, the study explores the photophysical properties of the molecular species. Vertical transitions to many excited singlet states have been computed and rationalized with different exchange‐correlation functionals. Differences between excitation energies are discussed and compared to the absorption spectrum of perylene in gas phase and diluted solution. De‐excitation energy from the relaxed geometry of the lowest excited singlet is in good agreement with the experimental fluorescence emission. Optimization of several coplanar forms of the perylene pair prove that, contrary to generalized gradient approximation (GGA) and hybrid exchange‐correlation functionals, corrected TDDFT is able to bind the perylene dimer in the ground state. Excitation energies from different dimer conformers point to dimer formation prior to photoexcitation. The fully relaxed excimer geometry belongs to the perfectly eclipsed conformation with D2h symmetry. The excimer equilibrium intermolecular distance is shorter than the separation found for the ground state, which is an indication of stronger interchromophore interaction in the excimer state. Excimer de‐excitation energy is in rather good agreement with the excimer band of perylene in concentrated solution. The study also scans the energy profiles of the ground and lowest excited states along several geometrical distortions. The nature of the interactions responsible for the excimer stabilization is explored in terms of excitonic and charge resonance contributions. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
9.
Recent interest in the application of density functional theory prompted us to test various functionals for the van der Waals interactions in the rare-gas dimers, the alkaline-earth metal dimers, zinc dimer, and zinc-rare-gas dimers. In the present study, we report such tests for 18 DFT functionals, including both some very recent functionals and some well-established older ones. We draw the following conclusions based on the mean errors in binding energies and complex geometries: (1) B97-1 gives the best performance for predicting the geometry of rare-gas dimers, whereas M05-2X and B97-1 give the best energetics for rare-gas dimers. (2) PWB6K gives the best performance for the prediction of the geometry of the alkaline-earth metal dimers, zinc dimers, and zinc-rare-gas dimers. M05-2X gives the best energetics for the metal dimers, whereas B97-1 gives the best energetics for the zinc-rare-gas dimers. (3) The M05 functional is unique in providing good accuracy for both covalent transition-metal dimers and van der Waals metal dimers. (4) The combined mean percentage unsigned error in geometries and energetics shows that M05-2X and MPWB1K are the overall best methods for the prediction of van der Waals interactions in metal and rare-gas van der Waals dimers.  相似文献   

10.
The title compounds 6 and 7 were synthesized in good yield (Schemes 1 and 2), and their mode of assembly was studied both in solution, for the tetrakis(decyloxy) derivative 6 , and in the crystal, for the tetramethoxy analogue 7 . The pyrimidin‐2‐amine moieties of 6 and 7 can engage in three different supramolecular interactions: i) metal ligation via one of the pyrimidine N‐atoms, ii) cooperative double H‐bonding via the NH2 group, and iii) π–π‐stacking interactions. In solution, coordination of the central Zn‐atom within the soluble porphyrinatozinc complex 19 leads to significant changes in the NMR and absorption spectra of 6 . In the absence of metal ligation, the next strongest interaction is H‐bonding which can operate in nonpolar or moderately polar solvents. In these cases, however, no stacking interaction or inclusion compounds could be put into evidence in the case of 6 by absorption, fluorescence, or NMR spectroscopies. The π‐stacking interactions were only observed in the crystal of 7 in conjunction with double H‐bonding. Slightly disordered DMSO molecules are also H‐bonded to the NH2 groups of 7 , perturbing the expected packing. The present study illustrates some of the challenges inherent to directing hierarchical assembly processes in the solid state.  相似文献   

11.
The asymmetric unit of the title compound, C6H5N3O, consists of discrete molecules of 9‐deazahypoxanthine [systematic name: 3H‐pyrrolo[3,2‐d]pyrimidin‐4(5H)‐one]. The structure displays N—H...O hydrogen bonding, connecting the molecules into centrosymmetric dimers. These dimers are then connected by N—H...N hydrogen bonds into a ladder‐like chain along the c axis. The secondary structure is stabilized by weak noncovalent contacts of the C—H...O and C—H...C types, as well as by π–π stacking interactions, which organize the structure into a zigzag architecture.  相似文献   

12.
13.
A DNA‐based covalent versus a non‐covalent approach is demonstrated to control the optical, chirooptical and higher order structures of Nile red ( Nr ) aggregation. Dynamic light scattering and TEM studies revealed that in aqueous media Nr ‐modified 2′‐deoxyuridine aggregates through the co‐operative effect of various non‐covalent interactions including the hydrogen bonding ability of the nucleoside and sugar moieties and the π‐stacking tendency of the highly hydrophobic dye. This results in the formation of optically active nanovesicles. A left‐handed helically twisted H‐type packing of the dye is observed in the bilayer of the vesicle as evidenced from the optical and chirooptical studies. On the other hand, a left‐handed helically twisted J‐type packing in vesicles was obtained from a non‐polar solvent (toluene). Even though the primary stacking interaction of the dye aggregates transformed from H→J while going from aqueous to non‐polar media, the induced supramolecular chirality of the aggregates remained the same (left‐handed). Circular dichroism studies of DNA that contained several synthetically incorporated and covalently attached Nr ‐modified nucleosides revealed the formation of helically stacked H‐aggregates of Nr but—in comparison to the noncovalent aggregates—an inversed chirality (right‐handed). This self‐assembly propensity difference can, in principle, be applied to other hydrophobic dyes and chromophores and thus open a DNA‐based approach to modulate the primary stacking interactions and supramolecular chirality of dye aggregates.  相似文献   

14.
Eleven kinds of density functionals in conjunction with three different basis sets are employed to investigate the homonuclear 5d-electron dimers: Hf2, Ta2, Re2, W2 and Hg2. The computed bond lengths, vibrational frequencies and dissociation energies of these molecules are used to compare with available experimental data to find the appropriate combination of functional and basis set. The different functionals and basis sets favor different ground electronic state for Hf2 and Re2 molecules, indicating that these two dimers are sensitive to the functionals used. The molecular properties of Hg2 dimer depend strongly on both functionals and basis sets used. It is found that the BP86 and PBEPBE functionals are generally successful in describing the 5d-electron dimers. For the ground states of these dimers, the bonding patterns are determined by natural bond orbital (NBO) analysis. Natural electron configurations show that the 6s and 5d orbitals in the bonding atoms hybrid with each other for the studied dimers except for Hg2.  相似文献   

15.
A comprehensive investigation of the complementary H‐bonding‐mediated self‐assembly between dipyrrolo[2,3‐b:3′,2′‐e]pyridine (P2P) electron donors and naphthalenediimide/perylenediimide (NDI/PDI) acceptors is reported. The synthesis of parent P2P and several aryl‐substituted derivatives is described, along with their optical, redox, and single‐crystal packing characteristics. The dual functionality of heteroatoms in the P2P/NDI(PDI) assembly, which act as proton donors/acceptors and also contribute to π‐conjugation, leads to H‐bonding‐induced perturbation of electronic levels. Concentration‐dependent NMR and UV/Vis spectroscopic studies revealed a cooperative effect of H‐bonding and π–π stacking interactions. This H‐bonding‐mediated co‐assembly of donor (D) and acceptor (A) components leads to a new charge‐transfer (CT) absorption that can be controlled throughout the visible range. The electronic interactions between D and A were further investigated by time‐dependent DFT, which provided insights into the nature of the CT transition. Electropolymerization of difuryl‐P2P afforded the first conjugated polymer incorporating H‐bonding recognition units in its main chain.  相似文献   

16.
17.
Eleven exchange‐correlational functionals of different types corrected for dispersion by Grimme's D3 correction in conjunction with the aug‐cc‐pVTZ basis set were tested on the following noble gas (Ng) dimers: Ne2, Ar2, Kr2, Xe2, and Rn2. For comparison, the D2 and D3BJ corrections were probed with the B3LYP functional. From post‐HF wavefunction methods, CCSD(T) theory was also included. The investigated properties involved potential energy curves, equilibrium bond distances, and interaction energies. The B3LYP‐D3, B3LYP‐D3BJ, and PBE0‐D3 functionals performed overall best for bond distances, while B3LYP‐D3 and B97‐D3 performed best for interaction energies. The importance of fortunate error cancellations was seen in the often reduced agreement with reference data upon correction for BSSE. As several functionals performed well selectively for some noble gases (and poorly for others), we also analysed the performance on the Ng2 dimers individually and recommended DFT‐D3 functionals for the calculation of large clusters of each Ng.  相似文献   

18.
We present two new hybrid meta exchange- correlation functionals, called M06 and M06-2X. The M06 functional is parametrized including both transition metals and nonmetals, whereas the M06-2X functional is a high-nonlocality functional with double the amount of nonlocal exchange (2X), and it is parametrized only for nonmetals.The functionals, along with the previously published M06-L local functional and the M06-HF full-Hartree–Fock functionals, constitute the M06 suite of complementary functionals. We assess these four functionals by comparing their performance to that of 12 other functionals and Hartree–Fock theory for 403 energetic data in 29 diverse databases, including ten databases for thermochemistry, four databases for kinetics, eight databases for noncovalent interactions, three databases for transition metal bonding, one database for metal atom excitation energies, and three databases for molecular excitation energies. We also illustrate the performance of these 17 methods for three databases containing 40 bond lengths and for databases containing 38 vibrational frequencies and 15 vibrational zero point energies. We recommend the M06-2X functional for applications involving main-group thermochemistry, kinetics, noncovalent interactions, and electronic excitation energies to valence and Rydberg states. We recommend the M06 functional for application in organometallic and inorganometallic chemistry and for noncovalent interactions. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Contribution to the Mark S. Gordon 65th Birthday Festschrift Issue.  相似文献   

19.
20.
Noncovalent interactions involving aromatic rings, such as π···π stacking, CH···π are very essential for supramolecular carbon nanostructures. Graphite is a typical homogenous carbon matter based on π···π stacking of graphene sheets. Even in systems not involving aromatic groups, the stability of diamondoid dimer and layer‐layer graphane dimer originates from C − H···H − C noncovalent interaction. In this article, the structures and properties of novel heterogeneous layer‐layer carbon‐nanostructures involving π···H‐C‐C‐H···π···H‐C‐C‐H stacking based on [n ]‐graphane and [n ]‐graphene and their derivatives are theoretically investigated for n = 16–54 using dispersion corrected density functional theory B3LYP‐D3 method. Energy decomposition analysis shows that dispersion interaction is the most important for the stabilization of both double‐ and multi‐layer‐layer [n ]‐graphane@graphene. Binding energy between graphane and graphene sheets shows that there is a distinct additive nature of CH···π interaction. For comparison and simplicity, the concept of H‐H bond energy equivalent number of carbon atoms (noted as NHEQ), is used to describe the strength of these noncovalent interactions. The NHEQ of the graphene dimers, graphane dimers, and double‐layered graphane@graphene are 103, 143, and 110, indicating that the strength of C‐H···π interaction is close to that of π···π and much stronger than that of C‐H···H‐C in large size systems. Additionally, frontier molecular orbital, electron density difference and visualized noncovalent interaction regions are discussed for deeply understanding the nature of the C‐H···π stacking interaction in construction of heterogeneous layer‐layer graphane@graphene structures. We hope that the present study would be helpful for creations of new functional supramolecular materials based on graphane and graphene carbon nano‐structures. © 2017 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号