首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two novel pyrazole-derived ligands, 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinic acid (CDPA) and 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)-N-phenylpicolinamide (CDPP) were prepared by 3,6-dichloropicolinic acid (DCPA). Their complexes with terbium(III) and europium(III) were synthesized. The complexes were characterized by elemental analysis, infrared spectra, 1H NMR and TG–DTG. Furthermore, the above complexes using 1,10-phenanthroline as a secondary ligand were also synthesized and characterized. The luminescence properties of these complexes in solid state were investigated. The results suggested that Tb(III) complexes exhibit more efficient luminescence than Eu(III) complexes and the fluorescence of the complexes with 1,10-phenanthroline as a secondary ligand was prominently stronger than that of complexes without this ligand., and the three ligand (DCPA), (CDPP) and (CDPA) are excellent sensitizers to Eu(III) and Tb(III) ion.  相似文献   

2.
Coordination of the ligands derived from benzimidazole with Cr(III) led to the formation of new fluorescent Cr (III) complexes. The structures of the new complexes were established by spectral, analytical data and Job’s method and an octahedral geometry was proposed for the complexes. Also, the DFT methods were employed to gain a deeper insight into geometry and spectral properties of the new Cr (III) complexes. The DFT-calculated vibrational modes of Cr(III) complexes are in good agreement with the experimental values, confirming suitability of the optimized geometries for the complexes. Fluorescent ligands and chromium complexes were spectrally characterized by UV–Vis and fluorescence spectroscopy. Results revealed that Cr(III) complexes generate fluorescence in dilute solution of DMSO. Calculated electronic absorption spectra were also provided by time-dependent density functional theory (TD-DFT) method. The new complexes exhibited potent antibacterial activity against a panel of strains of Gram negative bacterial and Gram positive species and their MIC was also determined. Two strains of Gram positive and two strains of Gram negative bacteria.  相似文献   

3.
The isolation and characterization of monomeric Fe(III) amido complexes with hybrid ureate/amidate ligands is described. An aryl azide serves as the source of the amido ligand in preparing the complexes from trigonal monopyramidal Fe(II) precursors. Aryl azides more commonly react with transition metal complexes by a two-electron oxidation process to yield imido complexes, suggesting that the Fe(III) amido complexes may be formed from high valent species by hydrogen atom abstraction from an external species. The mechanistic basis for formation of the amido complexes is investigated using substrates that readily donate hydrogen atoms. Results from these experiments suggest that the Fe(III) amido complexes are generated from Fe(IV) imido intermediates that can facilitate homolytic X-H bond cleavage. The Fe(III) amido complexes are high spin (S = 5/2) with a strong absorbance band at lambdamax approximately 600 nm and extinction coefficients between 2000 and 3000 M-1 cm-1. These complexes are hygroscopic, reacting with 1 equiv of water to produce the corresponding Fe(III)-OH complexes and p-toluidine.  相似文献   

4.
To mimic the electron-donor side of photosystem II (PSII), three trinuclear ruthenium complexes (2, 2a, 2b) were synthesized. In these complexes, a mixed-valent dinuclear Ru2(II,III) moiety with one phenoxy and two acetato bridges is covalently linked to a Ru(II) tris-bipyridine photosensitizer. The properties and photoinduced electron/energy transfer of these complexes were studied. The results show that the Ru2(II,III) moieties in the complexes readily undergo reversible one-electron reduction and one-electron oxidation to give the Ru2(II,III) and Ru2(III,III) states, respectively. This could allow for photooxidation of the sensitizer part with an external acceptor and subsequent electron transfer from the dinuclear ruthenium moiety to regenerate the sensitizer. However, all trinuclear ruthenium complexes have a very short excited-state lifetime, in the range of a few nanoseconds to less than 100 ps. Studies by femtosecond time-resolved techniques suggest that a mixture of intramolecular energy and electron transfer between the dinuclear ruthenium moiety and the excited [Ru(bpy)3]2+ photosensitizer is responsible for the short lifetimes. This problem is overcome by anchoring the complexes with ester- or carboxyl-substituted bipyridine ligands (2a, 2b) to nanocrystalline TiO2, and the desired electron transfer from the excited state of the [Ru(bpy)3]2+ moiety to the conduction band of TiO2 followed by intramolecular electron transfer from the dinuclear Ru2(II,III) moiety to photogenerated Ru(III) was observed. The resulting long-lived Ru2(III,III) state decays on the millisecond timescale.  相似文献   

5.
三价金配合物抗肿瘤活性研究*   总被引:1,自引:0,他引:1  
施鹏飞  姜琴 《化学进展》2009,21(4):644-653
三价金配合物具有潜在的抗肿瘤活性,是目前金属药物领域的研究热点。本文按配位原子的不同总结了稳定三价金配合物的结构特征,按其生物活性的构效关系、生物靶点和作用机制综述了三价金配合物抗肿瘤活性研究的最新成果:配体的结构特点以及离去基团对三价金配合物的体外细胞毒性影响较大;介绍了用于检测三价金配合物与可能的生物靶分子之间的相互作用的多种物理和生物学方法,重点关注了相互作用的模式,如嵌入/静电吸引/共价结合等,并解释了三价金配合物抗肿瘤活性的原因。最后提出了一些研究新思路,以期有助于设计得到靶标明确的具有良好药理活性的抗肿瘤药物。  相似文献   

6.
Three new solid lanthanide(III) complexes, [Ln(1-AMUH)3] · (NO3)3 (1-AMUH = 1-amidino-O-methylurea; Ln = Eu(III), Gd(III), or Tb(III)) were synthesised and characterised by elemental analysis, infrared spectra, magnetic moment measurement, and electron paramagnetic resonance (EPR) spectra for Gd(III) complex. The formation of lanthanide(III) complexes is confirmed by the spectroscopic studies. The photophysical properties of Gd(III), Eu(III), and Tb(III) complexes in solid state were investigated. The Tb(III) complex exhibits the strongest green emission at 543 nm and the Eu(III) complex shows a red emission at 615 nm while the Gd(III) complex shows a weak emission band at 303 nm. Under excitation with UV light, these complexes exhibited an emission characteristic of central metal ions. The powder EPR spectrum of the Gd(III) complex at 300 K exhibits a single broad band with g = 2.025. The bi-exponential nature of the decay lifetime curve is observed in the Eu(III) and Tb(III) complexes. The results reveal them to have potential as luminescent materials.  相似文献   

7.
The quadridentate N-heterocyclic ligand 6-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-2,2'?:?6',2'-terpyridine (CyMe(4)-hemi-BTBP) has been synthesized and its interactions with Am(III), U(VI), Ln(III) and some transition metal cations have been evaluated by X-ray crystallographic analysis, Am(III)/Eu(III) solvent extraction experiments, UV absorption spectrophotometry, NMR studies and ESI-MS. Structures of 1:1 complexes with Eu(III), Ce(III) and the linear uranyl (UO(2)(2+)) ion were obtained by X-ray crystallographic analysis, and they showed similar coordination behavior to related BTBP complexes. In methanol, the stability constants of the Ln(III) complexes are slightly lower than those of the analogous quadridentate bis-triazine BTBP ligands, while the stability constant for the Yb(III) complex is higher. (1)H NMR titrations and ESI-MS with lanthanide nitrates showed that the ligand forms only 1:1 complexes with Eu(III), Ce(III) and Yb(III), while both 1:1 and 1:2 complexes were formed with La(III) and Y(III) in acetonitrile. A mixture of isomeric chiral 2:2 helical complexes was formed with Cu(I), with a slight preference (1.4:1) for a single directional isomer. In contrast, a 1:1 complex was observed with the larger Ag(I) ion. The ligand was unable to extract Am(III) or Eu(III) from nitric acid solutions into 1-octanol, except in the presence of a synergist at low acidity. The results show that the presence of two outer 1,2,4-triazine rings is required for the efficient extraction and separation of An(III) from Ln(III) by quadridentate N-donor ligands.  相似文献   

8.
Summary The complexes formed from cobalt(III) and dipeptides such as glycylglycine, glycylaspartic acid, glycylthreonine, glycyltyrosine and glycylproline were studied. The formation process of cobalt(III)-dipeptide species was investigated by spectrophotometry after oxidizing the cobalt(II) complexes by sodium peroxide. The formation of the cobalt(III) complexes occurs through an oxo-intermediate, as shown by the spectral behaviour, and depends on the pH of the solutions.Complex stoichiometries, molar absorptivities and concentration ratios at the equilibrium of the cobalt(III)-dipeptide complexes were determined at pH 2.2 to avoid the formation of binuclear dioxygen-cobalt complexes.  相似文献   

9.
Chromium(III), manganese(II), iron(III), cobalt(II), nickel(II), copper(II), ruthenium(III), iridium(III), palladium(II) and platinum(II) complexes were synthesized with a 12-membered 1,4,7,10-tetraazadodeca-5,6,11,12-tetraene macrocylic ligand (L) and characterized by elemental analysis, molar conductance, magnetic susceptibility, IR, electronic, EPR and M?ssbauer [Fe(III)] spectral studies. The molar conductance measurements of all the complexes in DMF solution correspond to non-electrolytic nature for M(L)Cl2 complexes [where M=Mn(II), Co(II), Ni(II), Cu(II)], 1:1 electrolytes for M'(L)Cl3 complexes [where M'=Cr(III), Fe(III), Ru(III) and Ir(III)] and 1:2 electrolytes for M'(L)Cl2 complexes [where M'=Pd(II) and Pt(II)]. Thus, the complexes may be formulated as [M(L)C1(2)], [M'(L)C1(2)]C1 and [M'(L)]C1(2), respectively [where L=ligand]. All complexes were of the high-spin type and found to have six-coordinate octahedral geometry except the Pd(II) and Pt(II) complexes which were four coordinate, square planar and diamagnetic.  相似文献   

10.
Introduction of a single meso substituent into ClFe(III)(OEP) or K[(NC)(2)Fe(OEP)] results in significant changes in the geometric and/or spectroscopic properties of these complexes. The mono-meso-substituted iron(III) complexes ClFe(III)(meso-Ph-OEP), ClFe(III)(meso-n-Bu-OEP), ClFe(III)(meso-MeO-OEP), ClFe(III)(meso-Cl-OEP), ClFe(III)(meso-NC-OEP), ClFe(III)(meso-HC(O)-OEP), and ClFe(III)(meso-O(2)N-OEP) have been isolated and characterized by their UV/vis and paramagnetically shifted (1)H NMR spectra. The structures of both ClFe(III)(meso-Ph-OEP) and ClFe(III)(meso-NC-OEP) have been determined by X-ray crystallography. Both molecules have five-coordinate structures typical for high-spin (S = 5/2) iron(III) complexes. However, the porphyrins themselves no longer have the domed shape seen in ClFe(III)(OEP), and the N(4) coordination environment possesses a slight rectangular distortion. These high-spin, mono-meso-substituted iron(III) complexes display (1)H NMR spectra in chloroform-d solution which indicate that the conformational changes seen in the solid-state structures are altered by normal molecular motion to produce spectra consistent with C(s) molecular symmetry. In pyridine solution the high-spin six-coordinate complexes [(py)ClFe(III)(meso-R-OEP)] form. In methanol solution in the presence of excess potassium cyanide, the low-spin six-coordinate complexes K[(NC)(2)Fe(III)(meso-R-OEP)] form. The (1)H NMR spectra of these show that electron-donating substituents produce an upfield relocation of the meso-proton chemical shifts. This relocation is interpreted in terms of increased contribution from the less common (d(xz),d(yz))(4)(d(xy))(1) ground electronic state as the meso substituent becomes more electron donating.  相似文献   

11.
Groundwater samples collected from a tannery contaminated area were analyzed for chromium species with the objective of investigating the interference of Cr(III)-organic complexes in the determination of Cr(VI) using APDC–MIBK extraction procedure. The contribution of Cr(III), Cr(VI) and Cr(III)-organic complexes towards total chromium ranged between 2 and 61%, 27 and 86%, and, 6 and 23%, respectively. The Cr(III)-organic complexes were not extractable by APDC–MIBK, however, HNO3 digestion released the organic bound Cr(III). Interference of organic bound Cr(III) in Cr(VI) determination due to MIBK soluble Cr(III) was not observed. Significant difference between total dissolved chromium determined after appropriate digestion procedure, and the sum of dissolved Cr(III) and Cr(VI) determined indicates the presence of the Cr(III)-organic complexes. MIBK extraction of samples without APDC is an useful way to check the extractability of organic bound Cr(III). The presence of soluble Cr(III)-organic complexes thus add complexity to chromium speciation analysis by APDC–MIBK procedure.  相似文献   

12.
The stability constants of 5-nitrosalicylic acid (5-NSA) and 5-sulfosalicylic acid (5-SSA) complexes of Sc(III) were determined by potentiomeric pH titration. ML and ML2 type first and second complexes were observed in the solutions of 5-NSA and 5-SSA with Sc(III) at 25 degrees C in I=0.1 M ionic medium. The stability constants of Sc(III)-5NSA and Sc(III)-5SSA systems were also investigated by spectrophotometry to determine the stoichiometries of the complexes formed in the reactions. Our results showed that Sc(III)-5SSA complexes are more stable than the Sc(III)-5NSA complexes in aqueous solutions.  相似文献   

13.
You Y  Nam W 《Chemical Society reviews》2012,41(21):7061-7084
The development of cyclometalated Ir(III) complexes has enabled important breakthroughs in electroluminescence because such complexes permit the efficient population of triplet excited states that give rise to luminescent transitions. The triplet states of Ir(III) complexes are advantageous over those of other transition metal complexes in that their electronic transitions and charge-transfer characteristics are tunable over wide ranges. These favorable properties suggest that Ir(III) complexes have significant potential in a variety of photofunctions other than electroluminescence. In this critical review, we describe recent photonic applications of novel Ir(III) complexes. Ir(III) complexes have been shown to affect the exciton statistics in the active layers of organic photovoltaic cells, thereby improving the photon-to-current conversion efficiencies. Nonlinear optical applications that take advantage of the strong charge-transfer properties of triplet transitions are also discussed. The tunability of the electrochemical potentials facilitates the development of efficient photocatalysis in the context of water photolysis or organic syntheses. The photoredox reactivities of Ir(III) complexes have been employed in studies of charge migration along DNA chains. The photoinduced cytotoxicity of Ir(III) complexes on live cells suggests that the complexes may be useful in photodynamic therapy. Potential biological applications of the complexes include phosphorescence labeling and sensing. Intriguing platforms based on cyclometalated Ir(III) complexes potentially provide novel protein tagging and ratiometric detection. We envision that future research into the photofunctionality of Ir(III) complexes will provide important breakthroughs in a variety of photonic applications.  相似文献   

14.
Stability constants of binary Fe(III)-methylcysteine, Cr(III)-methylcysteine and mixed Fe(III)-methylcysteine-cysteine, Cr(III)-methylcysteine-cysteine complexes have been determined by paper electrophoresis at 0.1 M ionic strength and a temperature of 35 degrees C. The stability constants of Fe(III)-methylcysteine-cysteine and Cr(III)-methylcysteine-cysteine mixed complexes were found to be 6.00 +/- 0.07 and 5.05 +/- 0.15 (logarithm of stability constant values), respectively.  相似文献   

15.
The effect of Y(III) and Gd(III) coactivator ions on the intensity of Eu(III) and Tb(III) luminescence in monomer and polymer mixed-metal complexes was studied. Isomorphic replacement of Eu(III) and Tb(III) ions by Y(III) and Gd(III) ions in macromolecular complexes led to sensitization of Eu(III) and Tb(III) ion luminescence. A mechanism of columinescence was suggested. It involves a charge transfer and the ligand orbitals and the vacant orbitals of Eu(III) and Tb(III) ions and coactivators.  相似文献   

16.
Six novel Ln(III) Schiff base complexes were synthesized using rare earth metals with threonine and 5‐bromosalicylaldehyde, namely Pr(III), Sm(III), Gd(III), Tb(III), Er(III) and Yb(III) Schiff bases. These complexes were characterized using elemental analysis, molar conductivity, Fourier transform infrared and UV–visible spectroscopies, and thermogravimetry–differential thermal analysis. The general formula of the complexes is [Ln(L)(NO3)2(H2O)].NO3 (L = Schiff base ligand). The spectroscopic data reveal that the Schiff base ligand behaves as a tridentate ligand with ONO donor atoms sequencing towards the central metal ion. An investigation of fluorescence properties of the Sm(III), Er(III) and Tb(III) complexes shows that the Ln(III) ions can be sensitized efficiently by the ligand to some extent. Antimicrobial activity testing indicates that all six complexes exhibit antibacterial and antifungal ability against microbes with broad antimicrobial spectra. In addition, the antioxidant properties of the complexes were also screened. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Six complexes of rare earth nitrates (Ln=La, Sm, Eu, Gd, Tb, Dy) with a new amide type ligand, N-(naphthalen-2-yl)-N-phenyl-2-(quinolin-8-yloxy)acetamide (L) have been prepared and characterized by elemental analysis, conductivity measurements, IR and and 1H NMR spectra. Under excitation, Eu(III) and Sm(III) complexes exhibited strong red emissions. And the luminescence intensity of Sm(III) complex is higher than that of Eu(III) complex. Thus the Eu(III) and Sm(III) complexes are the potential light conversion agent. However, the Tb(III) and Dy(III) complexes cannot exhibit characteristic emissions of terbium and dysprosium ions, respectively. The results of phosphorescence spectrum show that the triplet-state energy level of the ligand matches better to the resonance level of Eu(III) than Tb(III) ion. In addition, the luminescence of the Eu(III) complex is also relatively strong in highly diluted tetrahydrofuran solution (2 x 10(-4)mol/L) compared with the powder. This is not only due to the solvate effects but also to the changes of the structure of the Eu(III) complex after being dissolved into the solvents. Furthermore, owing to the co-luminescence effect, the proper La(III) or Gd(III) doped Eu(III) complexes show stronger luminescence than the pure Eu(III) complex.  相似文献   

18.
近年来,人工核酸切割试剂的研究一直是化学生物学、生物化学和分子生物学中最为活跃的前沿领域之一。最近的研究结果表明大环多胺金属配合物在磷酸二酯水解方面表现出独特的催化性能,能作为化学核酸酶有效的催化DNA和RNA的磷酸二酯键的水解[1-2]。尤其是电荷较高的金属阳离子形  相似文献   

19.
A novel ligand, N2,N6-bis[2-(3-methylpyridyl)]pyridine-2,6-dicarboxamide (L2) and the corresponding Eu(III) and Tb(III) hydrochlorate complexes have been synthesized and characterized in detail based on elemental analysis, IR and NMR. The crystal and molecular structure of the complexes was determined by X-ray crystallography. The Eu(III) and Tb(III) ions were found to coordinate to the amido nitrogen atoms and pyridine nitrogen atoms. The luminescence properties of lanthanide complexes in solid state, in different solutions and in different pH value were investigated. The result shows that Tb(III) complexes exhibit more efficient luminescence than Eu(III) complexes, and the ligand (L2) is an excellent sensitizer to Tb(III) ion.  相似文献   

20.
The coordination compounds of neodymium(III), samarium(III), and europium(III) with the acyldihydrazones of imino-, oxo-, and thiodiacetic acids and 3-methyl-1-phenyl-4-formylpyrazol-5-one were synthesized and studied. According to X-ray diffraction data, the complexes are binuclear and the lanthanide cations are linked by three binucleating ligands. The coordination polyhedra have a three-cap triangular prism geometry, the prism bases being formed by oxygen atoms and the vertices being occupied by the imine nitrogen atoms. Solid Nd(III) and Sm(III) complexes show intense luminescence in the spectral regions characteristic of these cations. Europium(III) complexes are liminescence-inactive due to the low efficiency of excitation energy transfer to the resonance levels of the central atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号