首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Metalloporphyrin catalyzed biomimetic oxidation was used for the identification of nitric oxide (NO) donors with diverse chemical structure. Methodology was validated by testing known NO donors. Efficient automation of the test allowed us to investigate a subset of our corporate library. Several hits identified in this campaign were validated in both the chemical and also microsomal model that revealed all hits to be active in the biological system, as well. One of the hits showed comparable activity to V-PYRRO/NO, the prototypic liver selective NO donor.  相似文献   

3.
A synthetic path for the preparation of methacrylic homo- and copolymers containing secondary amine groups that can be converted into nitric oxide (NO) releasing N-diazeniumdiolates is described. The polymers are obtained by a multistep procedure involving synthesis of methacrylate monomers containing boc-protected secondary amine sites, free radical benzoyl peroxide initiated polymerization, deprotection of the amine sites, and subsequent reaction of the polymers with NO in the presence of sodium methoxide. Monomers with both linear and cyclic pendant secondary amines are examined as polymer building blocks. In most cases, polymers are obtained for both types with compositions that agree well with initial monomer ratios and with number average molecular weights (M(n)) ranging from 1.69 to 2.58 x 10(6) Da. The final N-diazeniumdiolated methacrylic amine polymers are shown to release NO for extended periods of time with "apparent" t(1/2) values ranging from 30 to 60 min when suspended in phosphate buffer, pH 7.4. Total NO loading and release for these materials can reach 1.99 micromol per mg of polymer and is proportional to the amine content of the polymer. It is further shown that by using a dimethacrylate cross-linking agent in conjunction with the various methacrylate amines, suspension polymerization methods can be employed to create small (100-200 microm) polymeric methacrylate microbeads. Such microbeads that can be sequentially deprotected and converted to NO release particles via in-situ diazeniumdiolate formation as carried out for the non-crosslinked polymers.  相似文献   

4.
ESR studies of ultraviolet-irradiated polyethylene (PE) were carried out. Irradiation effects different from those of high-energy radiation are observed. Ultraviolet radiation is absorbed selectively, and especially in carbonyl groups in PE produced by oxidation. Radicals produced were identified as \documentclass{article}\pagestyle{empty}\begin{document}$ \hbox{---} {\rm CH}_2 \hbox{---} {\dot {\rm C}} {\rm H} \hbox{---}{\rm CHO}$\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ \hbox{---} {\rm CH}_2 \hbox{---} {\dot {\rm C}} {\rm H} \hbox{---}{\rm CH}_2 \hbox{---}$\end{document}. Some radicals giving a quintet signal stable at room temperature were also observed but remained unidentified. The radical \documentclass{article}\pagestyle{empty}\begin{document}$ \hbox{---} {\rm CH}_2 \hbox{---} {\dot {\rm C}} {\rm H} \hbox{---}{\rm CHO}$\end{document} undergoes a mutual conversion with the acyl radical:   相似文献   

5.
[structure: see text]. The important biological secondary messenger NO can be generated from exogenous nitrovasodilators and NO donors. Nitrate esters are nitrovasodilators and NO mimetics, believed to be biotransformed to NO in vivo. On the basis of a mechanistic hypothesis, nitrates have been synthesized that release NO at significant rates in neutral aqueous solution in the presence only of added thiol. The novel masked beta-mercaptonitrates reported (SS-nitrates), provide information on possible sulfhydryl-dependent biotransformation mechanisms for nitrates in clinical use.  相似文献   

6.
7.
The photochemistry of 2',3',5'-tri-O-acetyl-5-iodo-4-thiouridine (3) in deoxygenated 1:1 CH(3)CN-H(2)O pH 5.8 (phosphate buffer) solution has been studied by means of steady-state and nanosecond laser flash photolysis methods. Under steady-state irradiation (lambda > or = 334 nm), the stable photoproducts were iodide ion, 2',3',5'-tri-O-acetyl-4-thiouridine (4), and two disulfides. The disulfides were the symmetrical bis-(2',3',5'-tri-O-acetyl-5-iodo-4-thiouridine) (5) and unsymmetrical 6, which contains both 4-thiouridine and 5-iodo-4-thiouridine residues. The formation of the dehalogenated photoproduct suggests that C(5)-I bond cleavage is a primary photochemical step. Attempts to scavenge the resulting C(5)-centered radical by suitable addends, bis-(N-alpha-acetyl)cystine-bis-N-ethylamide or benzene, were unsuccessful. Analysis of the photoproducts formed under these conditions showed that the S-atom is the reactive center. The photoproduct 4, obtained by irradiation of 3 in CD(3)CN-H(2)O, followed by reversed-phase HPLC isolation using nonlabeled eluents, did not contain deuterium. An analogous experiment performed in CH(3)CN-D(2)O gave deuterated product 4-d with 88% of the deuterium incorporated at C(5). Transient absorption observed upon laser excitation (lambda= 308 nm) of 3 was assigned to the 4-uridinylthiyl radical on the basis of the similarity of this spectrum with that obtained upon laser photolysis of the disulfide: bis-(2',3',5'-tri-O-acetyl-4-thiouridine) 14. On the basis of the results of steady-state and laser photolysis studies, a mechanism of the photochemical reaction of 3 is proposed. The key mechanistic step is a transformation of the C(5)-centered radical formed initially by C(5)-I bond cleavage into a long-lived S-centered radical via a 1,3-hydrogen shift. Theoretical calculations confirmed that the long-lived S-centered radical is the most stable radical derived from the 4-thiouracil residue.  相似文献   

8.
The consistent valence—force field of alkylthiyl radicals (RS·) was determined for the first time by the solution of an inverse spectral problem. The vibrational spectra of 12 linear and branched RS· forms were calculated. The thermodynamic functions (enthalpy, entropy, heat capacity, and Gibbs free energy) were determined by methods of statistical mechanics in a temperature interval of 298—1500 K. Within the framework of the additive—group approach, the quantitative structure—property relationships were considered for the thermodynamic functions of the RS· radicals, and the parameters of these relationships were calculated.  相似文献   

9.
By allowing dimethyl peroxide (10?4M) to decompose in the presence of nitric oxide (4.5 × 10?5M), nitrogen dioxide (6.5 × 10?5M) and carbon tetrafluoride (500 Torr), it has been shown that the ratio k2/k2′ = 2.03 ± 0.47: CH3O + NO → CH3ONO (reaction 2) and CH3O + NO2 → CH3ONO2 (reaction 2′). Deviations from this value in this and previous work is ascribed to the pressure dependence of both these reactions and heterogeneity in reaction (2). In contrast no heterogeneous effects were found for reaction (2′) making it an ideal reference reaction for studying other reactions of the methoxy radical. We conclude that the ratio k2/k2′ is independent of temperature and from k1 = 1010.2±0.4M?1 sec?1 we calculate that k2′ = 109.9±0.4M?1 sec?1. Both k2 and k2′ are pressure dependent but have reached their limiting high-pressure values in the presence of 500 Torr of carbon tetrafluoride. Preliminary results show that k4 = 10.9.0±0.6 10?4.5±1.1M?1 sec?1 (Θ = 2.303RT kcal mole?1) and by k4 = 108.6±0.6 10?2.4±1.1M?1 sec?1: CH3O + O2 → CH2O + HO2 (reaction 4) and CH3O + t-BuH → CH3OH + (t-Bu) (reaction 4′).  相似文献   

10.
Nitroxide radicals possess important antioxidant activity in live tissues because of their ability to scavenge reactive radicals. Despite the fact that, in cells, damaging free radicals are primarily quenched by glutathione (GSH) with subsequent formation of harmful glutathionyl radical (GS(*)), interactions of nitroxide radicals with GS(*) and thiols have not been studied in detail. In addition, intracellular metabolic pathways leading to the formation of secondary amines from nitroxides are unknown. Here we report that GS(*) radicals react efficiently and irreversibly with nitroxides to produce secondary amines. We developed a sensitive method for the detection of GS(*) based on their specific interaction with Ac-Tempo, a nonfluorescent conjugate of fluorogenic acridine with paramagnetic nitroxide Tempo, and used it to characterize interactions between nitroxide and thiyl radicals generated through phenoxyl radical recycling by peroxidase. During reaction of Ac-Tempo with GS(*), Tempo EPR signals decayed and acridine fluorescence concurrently increased. DMPO and PBN, spin traps for GS(*), inhibited this interaction. Using combined HPLC and mass spectrometry, we determined that 90% of the Ac-Tempo was converted into fluorescent acridine (Ac)-piperidine; GSH was primarily oxidized into sulfonic acid. In myeloperoxidase-rich HL-60 cells, Ac-piperidine fluorescence was observed upon stimulation of GS(*) generation by H(2)O(2) and phenol. Development of fluorescence was prevented by preincubation of cells with the thiol-blocking reagent N-ethylmaleimide as well as with peroxidase inhibitiors. Furthermore, Ac-Tempo preserved intracellular GSH and protected cells from phenol/GS(*) toxicity, suggesting a new mechanism for the free-radical scavenging activity of nitroxides in live cells.  相似文献   

11.
The review considers problems related to the formation, in the living organism, of nitric oxide, a versatile and vitally important regulator of cell metabolism. The pathways of formation of endogenous nitric oxide from L-arginine are discussed and the main approaches to increasing the NO concentration by introducing various types of exogenous nitric oxide donors into the organism and chemical and biological characteristics of these donors are considered. Primary attention is devoted to the known drugs that were shown to release NO under hydrolytic, oxidative, or reductive conditions. The solution of problems related to the elucidation of the mechanisms of drug action requires that the formation of nitric oxide be taken into account.  相似文献   

12.
13.
Diazeniumdiolates (also called NONOates) have been analyzed by electrospray ionization mass spectrometry (ESI-MS). The samples used are commercially available and included Diethylamine NONOate, DETA NONOate, Spermine NONOate, MAHMA NONOate, PROLI NONOate, Dipropylenetriamine NONOate, PAPA NONOate, and Sulpho NONOate. These compounds have been found to ionize upon ESI by protonation, deprotonation and sodiation. The MS(n) experiments provided strong evidence that such ions release NO, HNO, N(2)O, NO(2), N(2)O(2), N(3)O(3), N(4)O(3) and N(4)O(4) when collisionally activated. Thus, the facile donation of NO units is a property of such compounds. Negative-mode mass spectrometry has been particularly useful for the analysis of most of the NONOates studied here. The experiments have demonstrated the capabilities of mass spectrometry, along with CAD (MS/MS), to detect and characterize such compounds.  相似文献   

14.
We have developed an assay to detect reactive oxygen species (ROS) generated by UVA radiation utilising chemical probes which become fluorescent upon oxidation. Using a human bladder carcinoma cell line (MGH-U1) and spontaneously immortalised keratinocytes (HaCaT), we have shown a UVA (narrow band 365+/-5 nm) dose-dependent increase in fluorescence by flow cytometry following loading of the cells with either dihydrorhodamine 123 (DHR) or 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). The UVA response of both DHR and DCFH was enhanced by elevation of intracellular levels of the photosensitiser protoporphyrin IX by incubation for 2.5 h with 5-aminolaevulinic acid. Depletion of the antioxidant glutathione (GSH) using the inhibitor D,L-buthionine-sulphoximine (BSO), resulted in an increase in the UVA-induced fluorescence of DCF but not of rhodamine 123. Conversely, raising intracellular GSH levels with N-acetyl cysteine (NAC) had relatively little protective effect in terms of degree of induced fluorescence.  相似文献   

15.
Phospholipids containing trans-unsaturated fatty acid residues are the major products of the thiyl radical attack on L-alpha-phosphatidylcholine from soybean lecithin in homogeneous solution or in liposomes (LUVET). Thiyl radicals act as the catalyst for the cis-trans isomerization, and the number of catalytic cycles depends on the reaction conditions. The presence of approximately 0.2 mM oxygen does not influence the reaction outcome but accelerates the efficiency of cis-trans isomerization in homogeneous solution. Under these conditions, the PUFA peroxidation is found to be unimportant. A detailed study of the isomerization of methyl linoleate including product studies indicates the formation of a small amount of conjugated dienes that act as inhibitors. Indeed, all-trans-retinol substantially retarded the isomerization process.  相似文献   

16.
[reaction: see text] To achieve site specific delivery of nitric oxide (NO), a new class of glycosidase activated NO donors has been developed. Glucose, galactose, and N-acetylneuraminic acid were covalently coupled to 3-morphorlinosydnonimine (SIN-1), a mesoionic heterocyclic NO donor, via a carbamate linkage at the anomeric position. The beta-glycosides were successfully prepared for these conjugates, while the alpha-glycosidic compounds were very unstable. The new stable sugar-NO conjugates could release NO in the presence of glycosidases. Such NO prodrugs may be used as enzyme activated NO donors in biomedical research.  相似文献   

17.
Photochemical or thermal decomposition of azo‐compounds (such as 2,2‐azobisisobutyronitrile, 2,2‐azobis(2‐methylpropionamidine) dihydrochloride, dialkyl peroxides (such as tert‐butyl peroxide and diacyl peroxides (such as benzoyl peroxide) in anaerobic nitric oxide (NO)‐saturated dimethylsulfoxide (DMSO) or aqueous solutions yielded nitroxides. Well‐characterized electron paramagnetic resonance spectra of nitroxides revealed that NO was favorable for reacting with carbon‐centered and less stereo‐inhibited transient alkyl radicals, giving kinds of nitrosoalkane, typically nitrosomethane, which act sequentially as C‐nitroso compounds to trap transient radicals present in solution, yielding spin‐trapping adducts, i.e. nitroxides. Radicals, including sulfinyl radicals from UV‐irradiated DMSO, were trapped by the in situ formed CH3NO. O‐centered radicals could not add to the freshly formed C‐nitroso compounds. Possible mechanisms are suggested. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
Conclusions Despite its instability, nitrosomethane is capable of fixing free radicals in solution.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 6, pp. 1341–1343, June, 1973.  相似文献   

19.
20.
Rate constants for the combination of methyl radicals with NO and O2 have been measured by flash photolysis of azomethane coupled with product analysis by gas chromatography. Values of the rate constants have been obtained over the pressure region from 50 to 700 torr with He, N2, and Ar as quenching molecules. The high-pressure limits were obtained through an RRKM model calculation and were found to be The rate constants were measured relative to the methyl combination reaction k1 with k1 = 9.5 × 10?11 cm3/molec · sec. The RRKM model suggests D0(CH3? O2) = 32 ± 3 kcal/mole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号