首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper considers the propagation of a weakly nonlinear acoustic pulse in a slightly curved waveguide layer which is strongly inhomogeneous in the transverse direction and weakly inhomogeneous in the longitudinal direction. The basic system of hydrodynamic equations reduces to a nonlinear wave equation, whose coefficients are determined using the equations of state of the medium. It is established that as the adiabatic exponent passes through the value γ = 3/2, the nature of the pulse propagation changes: for large values of γ, the medium is focusing, and for smaller values, it is defocusing. It is shown that the pulse propagation process is characterized by three scales: the high-frequency filling is modulated by the envelope, whose evolution, in turn, is determined by the moderate-rate evolution of the envelope phase and slow amplitude variation. A generalized nonlinear Schrödinger equation with the coefficients dependent on the longitudinal coordinate is derived for the pulse envelope. An explicit soliton solution of this equation is constructed for some types of longitudinal inhomogeneity.  相似文献   

2.
Based on mechanics of anisotropic material, the dynamic crack propagation problem of I/II mixed mode crack in an infinite anisotropic body is investigated. Expressions of dynamic stress intensity factors for modes I and II crack are obtained. Components of dynamic stress and dynamic displacements around the crack tip are derived. The strain energy density theory is used to predict the dynamic crack extension angle. The critical strain energy density is determined by the strength parameters of anisotropic materials. The obtained dynamic crack tip fields are unified and applicable to the analysis of the crack tip fields of anisotropic material, orthotropic material and isotropic material under dynamic or static load. The obtained results show Crack propagation characteristics are represented by the mechanical properties of anisotropic material, i.e., crack propagation velocity M and fiber direction α. In particular, the fiber direction α and the crack propagation velocity M give greater influence on the variations of the stress fields and displacement fields. Fracture angle is found to depend not only on the crack propagation but also on the anisotropic character of the material.  相似文献   

3.
A macroscopic rheological theory for compressible isothermal nematic liquid crystal films is developed and used to characterize the interfacial elastic, viscous, and viscoelastic material properties. The derived expression for the film stress tensor includes elastic and viscous components. The asymmetric film viscous stress tensor takes into account the nematic ordering and is given in terms of the film rate of deformation and the surface Jaumann derivative. The material function that describes the anisotropic viscoelasticity is the dynamic film tension, which includes the film tension and dilational viscosities. Viscous dissipation due to film compressibility is described by the anisotropic dilational viscosity. Three characteristic film shear viscosities are defined according to whether the nematic orientation is along the velocity direction, the velocity gradient, or the unit normal. In addition the dependence of the rheological functions on curvature and film thickness has been identified. The rheological theory provides a theoretical framework to future studies of thin liquid crystal film stability and hydrodynamics, and liquid crystal foam rheology. Received: 9 October 2000 Accepted: 6 April 2001  相似文献   

4.
Experiments in which pressure pulses are propagated in a column of fluid held in a stiff tube are described. A parameter, η, which characterizes the tube stiffness has been defined and a one-dimensional model of the wave propagation which includes dissipation both in the volume of the fluid and at the wall of the containing tube has been developed. It is found that dissipation at the wall dominates dissipation in the fluid volume for pulse lengths long compared to the tube radius. The experimental results delineate practical limits on the ratio of pulse length to tube radius for which the wave propagation can be characterized as one-dimensional. The validity of a one-dimensional representation of pulse transmission and reflection at a solid-fluid interface is also evaluated with the aid of experimental results. Finally, the dissipation model in combination with the experimental results leads to a simple expression for pressure pulse attenuation in terms of a nondimensional physical parameter, Ξ, and tube radius.  相似文献   

5.
This paper deals with the theoretical aspects of chemical-dissolution front instability problems in two-dimensional fluid-saturated porous media including medium anisotropic effects. Since a general anisotropic medium can be described as an orthotropic medium in the corresponding principal directions, a two-dimensional orthotropic porous medium is considered to derive the analytical solution for the critical condition, which is used to judge whether or not the chemical dissolution front can become unstable during its propagation. In the case of the mineral dissolution ratio (that is defined as the ratio of the dissolved-mineral equilibrium concentration in the pore-fluid to the molar concentration of the dissolvable mineral in the solid matrix of the fluid-saturated porous medium) approaching zero, the corresponding critical condition has been mathematically derived when medium permeability anisotropic effects are considered. As a complementary tool, the computational simulation method is used to simulate the morphological evolution of chemical dissolution fronts in two-dimensional fluid-saturated porous media including medium anisotropic effects. The related theoretical and numerical results demonstrated that: (1) a decrease in the medium anisotropic permeability factor (or ratio), which is defined as the ratio of the principal permeability in the transversal direction to that in the longitudinal direction parallel to the pore-fluid inflow direction, can stabilize the chemical dissolution front so that it becomes more difficult for a planar chemical-dissolution front to evolve into different morphologies in the chemical dissolution system; (2) the medium anisotropic permeability ratio can have significant effects on the morphological evolution of the chemical dissolution front. When the Zhao number of the chemical dissolution system is greater than its critical value, the greater the medium anisotropic permeability ratio, the faster the irregular chemical-dissolution front grows.  相似文献   

6.
Modulated simple wave theory is used to study the propagation of one dimensional, finite amplitude, high frequency pulses in composites which are modelled as interpenetrating solid continua with two identifiable constituents. The equations which govern the propagation of high frequency pulses are derived and their properties are studied in detail. Particular attention is paid to small amplitude high frequency pulses and results for pulses propagating into composites of a rather general nature are presented. The special results which hold for pulses which propagate into uniform regions are discussed in detail. The influence of the structure of the composite on pulse propagation is also assessed by examining pulse propagation in a number of different types of composite.  相似文献   

7.
The dynamic behaviour of sharp V-notches which are either symmetric or oblique to the longitudinal boundary of a homogeneous elastic and isotropic strip subjected to an impact plane pulse was studied by the method of caustics. The stress pulse impinging on the flanks of the notch reflects and diffracts in different ways depending on the geometry of the notch relative to the coming pulse. For compressive stress pulses a stress concentration at the bottom of the notch does not create a crack propagation phenomenon, whereas for tensile pulses there is a possibility for an incubation, nucleation and eventual propagation of a crack. A complete experimental study of the incubation nucleation and propagation of cracks from the bottoms of notches in thin strips under tensile stress pulses was undertaken, whereas for compressive stress pulses the stress concentration at the bottom of the notch was evaluated. Interesting results were disclosed concerning the reinforcement of pulses by reflection and caging in, the evolution of stress concentration at the notch and the mode of crack propagation inside the plate. Dynamic stress intensity factors were evaluated all over the paths of crack propagation indicating a close intimacy between crack velocity and values of SIFs.  相似文献   

8.
On the basis of the experimental data of the piano hammers study the one-dimensional constitutive equation of the wool felt material is proposed. This relation enables deriving a nonlinear partial differential equation of motion with third order terms, which takes into account the elastic and hereditary properties of a microstructured felt. This equation of motion is used to study pulse evolution and propagation in the one-dimensional case. Thorough analysis both of the linear and nonlinear problems is presented. The physical dimensionless parameters are established and their importance in describing the dispersion effects is discussed. It is shown that both normal and anomalous dispersion types exist in wool felt material. The dispersion analysis shows also that for the certain ranges of physical parameters negative group velocity will appear. The initial value problem is considered and the analysis of the numerical solution describing the strain wave evolution is provided. The influence of the material parameters on the form of a propagating pulse is demonstrated and explained.  相似文献   

9.
In this research, the incorporation of material anisotropy is proposed for the large-deformation analyses of highly flexible dynamical systems. The anisotropic effects are studied in terms of a generalized elastic forces (GEFs) derivation for a continuum-based, thick, and fully parameterized absolute nodal coordinate formulation plate element, of which the membrane and bending deformation effects are coupled. The GEFs are first derived for a fully anisotropic, linearly elastic material, characterized by 21 independent material parameters. Using the same approach, the GEFs are obtained for an orthotropic material, characterized by nine material parameters. Furthermore, the analysis is extended to the case of nonlinear elasticity; the GEFs are introduced for a nonlinear Cauchy-elastic material, characterized by four in-plane orthotropic material parameters. Numerical simulations are performed to validate the theory for statics and dynamics and to observe the anisotropic responses in terms of displacements, stresses, and strains. The presented formulations are suitable for studying the nonlinear dynamical behavior of advanced elastic materials of an arbitrary degree of anisotropy.  相似文献   

10.
Experimental work is reported on the propagation of a stress pulse in a viscoelastic waveguide. The data obtained are compared with results of analysis using one-dimensional wave-propagation theory. The waveguide used in this work is a low-density polyethylene rod 1/2 in. in diameter and 30-in. long. Stress input to the waveguide and the resulting particle velocity at three stations are measured using a crystal stress transducer, two Faraday-principle velocity transducers and a capacitor transducer. The experiment is described mathematically as a boundary-value problem formulated in terms of the one-dimensional equation of motion, the strain-displacement relationship, a hereditary constitutive equation and the stress-boundary condition. Fourier transform and inversion yield an integral expression for velocity which is evaluated numerically at three stations using measured values for the stress-boundary condition, material attenuation and phase velocity. The analytical results compare favorably with the experimental data. The one-dimensional theory appears adequate to describe pulse propagation of this type. The attenuation and phase velocity used here are found to be a linear function and a logarithmic increasing function of frequency respectively.  相似文献   

11.
In this paper we present a continuum theory for large strain anisotropic elastoplasticity based on a decomposition of the modified plastic velocity gradient into energetic and dissipative parts. The theory includes the Armstrong and Frederick hardening rule as well as multilayer models as special cases even for large strain anisotropic elastoplasticity. Texture evolution may also be modelled by the formulation, which allows for a meaningful interpretation of the terms of the dissipation equation.  相似文献   

12.
This paper investigates the dynamic response to a moving load of a system comprising an initially stressed covering layer and initially stressed half-plane, within the scope of the piecewise-homogeneous body model utilizing three-dimensional linearized wave propagation theory in the initially stressed body. It was assumed that the materials of the layer and half-plane are anisotropic (orthotropic), and that the velocity of the line-located moving load is constant as it acts on the free face of the covering layer. The investigations were made for a two-dimensional problem (plane-strain state) under subsonic velocity of the moving load for complete and incomplete contact conditions. Corresponding numerical results were obtained for the stiffer layer and soft half-plane system in which the modulus of elasticity of the covering layer material (for the moving direction of the load) is greater than that of the half-plane material, which was assumed to be isotropic. Numerical results are presented and discussed for the critical velocity and stress distribution for various values of the problem parameters. In particular, it was established that, the critical velocity of the moving load is controlled mainly with a Rayleigh wave speed of a half-plane material and the initial stretching of the covering layer causes to increase these values.  相似文献   

13.
Frictional sliding along an interface between two identical isotropic elastic plates under impact shear loading is investigated experimentally and numerically. The plates are held together by a compressive stress and one plate is subject to edge impact near the interface. The experiments exhibit both a crack-like and a pulse-like mode of sliding. Plane stress finite element calculations modeling the experimental configuration are carried out, with the interface characterized by a rate and state dependent frictional law. A variety of sliding modes are obtained in the calculations depending on the impact velocity, the initial compressive stress and the values of interface variables. For low values of the initial compressive stress and impact velocity, sliding occurs in a crack-like mode. For higher values of the initial compressive stress and/or impact velocity, sliding takes place in a pulse-like mode. One pulse-like mode involves well-separated pulses with the pulse amplitude increasing with propagation distance. Another pulse-like mode involves a pulse train of essentially constant amplitude. The propagation speed of the leading pulse (or of the tip of the crack-like sliding region) is near the longitudinal wave speed and never less than times the shear wave speed. Supersonic trailing pulses are seen both experimentally and computationally. The trends in the calculations are compared with those seen in the experiments.  相似文献   

14.
Based on a dissipation inequality at finite strains and the effective stress concept, a Chaboche-type infinitesimal viscoplastic theory is extended to finite-strain cases coupled with anisotropic damage. The anisotropic damage is described by a rank-two symmetric tensor. The constitutive law is formulated in the corotational material coordinate system. Thus, the evolution equations of all internal variables can be expressed in terms of their material time derivatives. The numerical algorithm for implementing the material model in a finite element programme is also formulated, and several numerical examples are shown. Comparing the numerical simulations with experimental observations indicates that the present material model can describe well the primary, secondary and tertiary creep. It can also predict the anisotropic damage modes observed in experiments correctly.  相似文献   

15.
A linear theory of propagation of spherical and cylindrical disturbances in polydisperse gas-vapor-drop mixtures is developed. Unsteady and non-equilibrium effects in the interphase mass, momentum, and energy exchange are taken into account. A general dispersion relation determining the propagation of plane, spherical, and cylindrical harmonic disturbances in polydisperse gas-vapor-drop systems is obtained. Using the fast Fourier transform, the propagation of pulse disturbances of different shapes in mixtures of air with water vapor and water drops is calculated. The effect of the geometry and interphase heat and mass transfer on the evolution of weak pulses in polydisperse air fogs is investigated.  相似文献   

16.
This paper deals with an analytical model of thermal stresses which originate during a cooling process of an anisotropic solid continuum with uniaxial or triaxial anisotropy. The anisotropic solid continuum consists of anisotropic spherical particles periodically distributed in an anisotropic infinite matrix. The particles are or are not embedded in an anisotropic spherical envelope, and the infinite matrix is imaginarily divided into identical cubic cells with central particles. The thermal stresses are thus investigated within the cubic cell. This mulfi-particle-(envelope)-matrix system based on the cell model is applicable to two- and three-component materials of precipitate-matrix and precipitate-envelope-matrix types, respectively. Finally, an analysis of the determination of the thermal stresses in the multi-par- ticle-(envelope)-matrix system which consists of isotropic as well as uniaxial- and/or triaxial-anisotropic components is presented. Additionally, the thermal-stress induced elastic energy density for the anisotropic components is also derived. These analytical models which are valid for isotropic, anisotropic and isotropic-anisotropic multi-particle- (envelope)-matrix systems represent the determination of important material characteristics. This analytical determination includes: (1) the determination of a critical particle radius which defines a limit state regarding the crack initiation in an elastic, elastic-plastic and plastic components; (2) the determination of dimensions and a shape of a crack propagated in a ceramic components; (3) the determination of an energy barrier and micro-/macro-strengthening in a component; and (4) analytical-(experimental)-computational methods of the lifetime prediction. The determination of the thermal stresses in the anisotropic components presented in this paper can be used to determine these material characteristics of real two- and three-component materials with anisotropic components or with anisotropic and isotropic components.  相似文献   

17.
In a recent paper we examined the loss of ellipticity and its interpretation in terms of fiber kinking and other instability phenomena in respect of a fiber-reinforced incompressible elastic material. Here we provide a corresponding analysis for fiber-reinforced compressible elastic materials. The analysis concerns a material model which consists of an isotropic base material augmented by a reinforcement dependent on the fiber direction. The assessment of loss of ellipticity can be cast in terms of the eigenvalues of the acoustic tensors associated with the isotropic and anisotropic parts of the strain-energy function. For the anisotropic part, two different reinforcing models are examined and it is shown that, depending on the choice of model and whether the fiber is under compression or extension, loss of ellipticity may be associated with, in particular, a weak surface of discontinuity normal to or parallel to the deformed fiber direction or at an intermediate angle. Under compression the associated failure interpretations include fiber kinking and fiber splitting, while under extension fiber de-bonding and matrix failure are included.  相似文献   

18.
The simplest form of the matrix of elasticity moduli of an anisotropic material conducting purely longitudinal and transverse waves with an arbitrary direction of the wave normal is obtained. A generic solution of equations in displacements is represented in terms of three functions satisfying independent wave equations. In the case of planar deformation, this solution yields a complex representation coinciding with the Kolosov–Muskhelishvili formulas for an isotropic material. The formulas in the present work also determine an anisotropic material with Young's modulus identical for all directions, as in an isotropic medium.  相似文献   

19.
《Wave Motion》1987,9(3):245-259
The two-dimensional evolution of Stokes waves over a long fetch has been studied only by means of the cubic Schrödinger equation which is accurate up to the third order in wave slope (Yuen and Ferguson [1], Martin and Yuen [2] and Litvak et al. [3]). For uniform Stokes waves unstable sidebands are known to induce modulation and demodulation at the beginning but energy leakage to higher frequencies leads to chaos eventually and invalidates the theory. For one-dimensional evolution, the fourth-order extension by Dysthe [4] has been shown to corroborate better with experiments that the third-order (Lo and Mei [5]). In this paper we pursue further the implications of the fourth-order theory on two-dimensional evolutions. For the instability of uniform wave trains due to oblique sidebands, we find that the narrower instability region and the presence of a higher-order dispersion term tend to delay the trend toward chaos. We also study the evolution of a single three-dimensional envelope with various aspect ratios. Comparisons between the third- and fourth-order theories are made. Specifically, if the initial envelope is elongated in the direction of the crests, new groups are first born near the center, with ridges parallel to the crests, then everything flattens out. If the initial envelope is elongated in the direction of wave propagation, then the tendency of group-splitting is reduced. Furthermore, the envelope elongates crest-wise to form a ridge before eventual flattening.  相似文献   

20.
Weakly non-linear plane waves are considered in hyperelastic crystals. Evolution equations are derived at a quadratically non-linear level for the amplitudes of quasi-longitudinal and quasi-transverse waves propagating in arbitrary anisotropic media. The form of the equations obtained depends upon the direction of propagation relative to the crystal axes. A single equation is found for all propagation directions for quasi-longitudinal waves, but a pair of coupled equations occurs for quasi-transverse waves propagating along directions of degeneracy, or acoustic axes. The coupled equations involve four material parameters but they simplify if the wave propagates along an axis of material symmetry. Thus, only two parameters arise for propagation along an axis of twofold symmetry, and one for a threefold axis. The transverse wave equations decouple if the axis is fourfold or higher. In the absence of a symmetry axis it is possible that the evolution equations of the quasi-transverse waves decouple if the third-order elastic moduli satisfy a certain identity. The theoretical results are illustrated with explicit examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号