首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With surface X-ray diffraction (SXRD) using a high-pressure reaction chamber we investigated in-situ the oxidation of the Ru(0001) model catalyst under various reaction conditions, starting from a strongly oxidizing environment to reaction conditions typical for CO oxidation. With a mixture of O(2) and CO (stoichiometry, 2:1) the partial pressure of oxygen has to be increased to 20 mbar to form the catalytically active RuO(2)(110) oxide film, while in pure oxygen environment a pressure of 10(-5) mbar is already sufficient to oxidize the Ru(0001) surface. For preparation temperatures in the range of 550-630 K a self-limiting RuO(2)(110) film is produced with a thickness of 1.6 nm. The RuO(2)(110) film grows self-acceleratedly after an induction period. The RuO(2) films on Ru(0001) can readily be reduced by H(2) and CO exposures at 415 K, without an induction period.  相似文献   

2.
RuO(2)-based catalysts are much more active in the oxidation of CO than related metallic Ru catalysts. This high catalytic activity (or low activation barrier) is attributed to the weak oxygen surface bonding of bridging O atoms on RuO(2)(110) in comparison with the strongly chemisorbed oxygen on Ru(0001). Since the RuO(2)(110) surface is able to stabilize an even more weakly bound on-top oxygen species, one would anticipate that the catalytic activity will increase further under oxidizing conditions. We will show that this view is far too simple to explain our temperature-programmed reaction experiments, employing isotope labeling of the potentially active surface oxygen species on RuO(2)(110). Rather, both surface O species on RuO(2)(110) reveal similar activities in oxidizing CO.  相似文献   

3.
The dynamic behavior of surface accommodated chlorine atoms on RuO(2)(110) was studied by a variety of experimental methods including high resolution core level shift, thermal desorption-, and in situ infrared spectroscopy as well as in situ surface X-ray diffraction in combination with state-of-the-art density functional theory calculations. On the chlorinated RuO(2)(110) surface the undercoordinated oxygen atoms have been selectively replaced by chlorine. These strongly bound surface chlorine atoms shift from bridging to on-top sites when the sample is annealed in oxygen, while the reverse shift of Cl from on-top into bridge positions is observed during CO exposure; the vacant bridge position is then occupied by either chlorine or CO. For the CO oxidation reaction over chlorinated RuO(2)(110), the reactant induced site switching of chlorine causes a site-blocking of the catalytically active one-fold coordinatively unsaturated (1f-cus) Ru sites. This site blocking reduces the number of active sites and, even more important, on-top Cl blocks the free migration of the adsorbed reactants along the one-dimensional 1f-cus Ru rows, thus leading to a loss of catalytic activity.  相似文献   

4.
采用溶胶-凝胶法制备系列的镁掺杂Y2-xMgxRu2O7-δ(YMRO?x,x=0.05、0.1、0.15)催化剂,通过X射线光电子能谱对其进行价态分析发现,采用小离子半径的Mg^2+取代烧绿石结构中处于A位的部分Y^3+,进一步增加了烧绿石结构中氧缺陷数量,也引发了部分Ru^4+转变为Ru^5+,释放电子到表面,促进了氧析出反应(OER)。其中YMRO?0.1催化剂的含氧缺陷浓度最高,其催化活性最高。在达到10 mA·cm^-2电流密度时,相比于RuO2(358 mV)、Y2Ru2O7-δ(294 mV),YMRO?0.1仅需施加265 mV过电位并且其Tafel斜率相对于RuO2(88 mV·dec^-1)和Y2Ru2O7-δ(64 mV·dec^-1)仅为45 mV·dec^-1。此外,由于氧空位增多,即活性位点增多,降低了自由基从金属位点脱附的吉布斯自由能,促进了OER催化性能。第一性原理表明,替位原子MgY与氧空位形成复合体,可以降低氧空位形成能,同时随着Mg^2+引入,带隙变小,电荷迁移能也随之变小,进而可以得到更高的催化活性。  相似文献   

5.
The development of green, selective, and efficient catalysts, which can aerobically oxidize a variety of alcohols to their corresponding aldehydes and ketones, is of both economic and environmental significance. We report here the synthesis of a novel aerobic oxidation catalyst, a zeolite-confined nanometer-sized RuO(2) (RuO(2)-FAU), by a one-step hydrothermal method. Using the spatial constraints of the rigid zeolitic framework, we sucessfully incorporated RuO(2) nanoparticles (1.3 +/- 0.2 nm) into the supercages of faujasite zeolite. Ru K-edge X-ray absorption fine structure results indicate that the RuO(2) nanoclusters anchored in the zeolite are structurally similar to highly hydrous RuO(2); that is, there is a two-dimensional structure of independent chains, in which RuO(6) octahedra are connected together by two shared oxygen atoms. In our preliminary catalytic studies, we find that the RuO(2) nanoclusters exhibit extraordinarily high activity and selectivity in the aerobic oxidation of alcohols under mild conditions, for example, air and ambient pressure. The physically trapped RuO(2) nanoclusters cannot diffuse out of the relatively narrow channels/pores of the zeolite during the catalytic process, making the catalyst both stable and reusable.  相似文献   

6.
The visualization of surface reactions on the atomic scale provides direct insight into the microscopic reaction steps taking place in a catalytic reaction at a (model) catalyst's surface. Employing the technique of scanning tunneling microscopy (STM), we investigated the CO oxidation reaction over the RuO2(110) and RuO2(100) surfaces. For both surfaces the protruding bridging O atoms are imaged in STM as bright features. The reaction mechanism is identical on both orientations of RuO2. CO molecules adsorb on the undercoordinated surface Ru atoms from where they recombine with undercoordinated O atoms to form CO2 at the oxide surface. In contrast to the RuO2(110) surface, the RuO2(100) surface stabilizes also a catalytically inactive c(2 x 2) surface phase onto which CO is not able to adsorb above 100 K. We argue that this inactive RuO2(100)-c(2 x 2) phase may play an important role in the deactivation of RuO2 catalysts in the electrochemical Cl2 evolution and other heterogeneous reactions.  相似文献   

7.
钙钛矿型La1+X/2Sr1-x/2Co1-xCuxO3催化CO氧化活性与表征   总被引:5,自引:0,他引:5  
The catalytic activity and the reactive properties of perovskite-type oxides catalysts La(1+x/2)Sr(1-x/2)Co1-xCuxO3 for CO oxidation reaction were investigated. Results showed that the catalytic activity for CO oxidation reached to a maximum when x=0.4. The temperature for complete CO oxidation under atmospheric and experimental conditions was 168℃. According to the stoicheometry of catalyst, all catalysts were oxygen defect compounds. The active oxygen species on this catalyst was the adsorbed oxygen which was adsorbed on the surface lattice oxygen defect. It was also found that Co4+ existed in the catalysts and the sufrace active oxygen species was caused by the Co4+. It was concluded that CO oxidation reaction on this catalyst was carried out by the valence change between Co3+ and Co4+ which was adjusted by the adsorbed oxygen.  相似文献   

8.
The design and development of metal-cluster-based heterogeneous catalysts with high activity, selectivity, and stability under solution-phase reaction conditions will enable their applications as recyclable catalysts in large-scale fine chemicals production. To achieve these required catalytic properties, a heterogeneous catalyst must contain specific catalytically active species in high concentration, and the active species must be stabilized on a solid catalyst support under solution-phase reaction conditions. These requirements pose a great challenge for catalysis research to design metal-cluster-based catalysts for solution-phase catalytic processes. Here, we focus on a silica-supported, polymer-encapsulated Pt catalyst for an electrophilic hydroalkoxylation reaction in toluene, which exhibits superior selectivity and stability against leaching under mild reaction conditions. We unveil the key factors leading to the observed superior catalytic performance by combining X-ray absorption spectroscopy (XAS) and reaction kinetic studies. On the basis of the mechanistic understandings obtained in this work, we also provide useful guidelines for designing metal-cluster-based catalyst for a broader range of reactions in the solution phase.  相似文献   

9.
The formation and structural characteristics of Ru species applied as a cocatalyst on (Ga(1)(-)(x)()Zn(x)())(N(1)(-)(x)()O(x)()) are examined by scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy. RuO(2) is an effective cocatalyst that enhances the activity of (Ga(1)(-)(x)()Zn(x)())(N(1)(-)(x)()O(x)()) for overall water splitting under visible-light irradiation. The highest photocatalytic activity is obtained for a sample loaded with 5.0 wt % RuO(2) from an Ru(3)(CO)(12) precursor followed by calcination at 623 K. Calcination is shown to cause the decomposition of initial Ru(3)(CO)(12) on the (Ga(1)(-)(x)()Zn(x)())(N(1)(-)(x)()O(x)()) surface (373 K) to form Ru(IV) species (423 K). Amorphous RuO(2) nanoclusters are then formed by an agglomeration of finer particles (523 K), and the nanoclusters finally crystallize (623 K) to provide the highest catalytic activity. The enhancement of catalytic activity by Ru loading from Ru(3)(CO)(12) is thus shown to be dependent on the formation of crystalline RuO(2) nanoparticles with optimal size and coverage.  相似文献   

10.
The oxidation states formed during low-temperature oxidation (T < 500 K) of a Ru(0001) surface are identified with photoelectron spectromicroscopy and thermal desorption (TD) spectroscopy. Adsorption and consecutive incorporation of oxygen are studied following the distinct chemical shifts of the Ru 3d(5/2) core levels of the two topmost Ru layers. The evolution of the Ru 3d(5/2) spectra with oxygen exposure at 475 K and the corresponding O2 desorption spectra reveal that about 2 ML of oxygen incorporate into the subsurface region, residing between the first and second Ru layer. Our results suggest that the subsurface oxygen binds to the first and second layer Ru atoms, yielding a metastable surface "oxide", which represents the oxidation state of an atomically well ordered Ru(0001) surface under low-temperature oxidation conditions. Accumulation of more than 3 ML of oxygen is possible via defect-promoted penetration below the second layer when the initial Ru(0001) surface is disordered. Despite its higher capacity for oxygen accumulation, also the disordered Ru surface does not show features characteristic for the crystalline RuO2 islands. Development of lateral heterogeneity in the oxygen concentration is evidenced by the Ru 3d(5/2) images and microspot spectra after the onset of oxygen incorporation, which becomes very pronounced when the oxidation is carried out at T > 550 K. This is attributed to facilitated O incorporation and oxide nucleation in microregions with a high density of defects.  相似文献   

11.
A major impediment to the commercialization of fuel cells is the low activity of electrocatalysts for the oxygen reduction reaction that involves multiple electron transfer steps. Platinum is considered the best cathode catalyst toward oxygen reduction to water; however, Pt remains an expensive metal of low abundance, and it is of great importance to find Pt-free metal alternatives. Among various Pt-free catalysts under development, ruthenium-based compounds show significant catalytic activity and selectivity for four-electron reduction of oxygen to water in acidic environments. This article provides a short review on the different classes of Ru-based catalysts focusing on the catalytically active reaction sites and the oxygen reduction mechanism in acidic media. After a brief discussion of the oxygen reduction kinetics on a pure Ru metal, the paper reviews the catalytic properties of the selected Ru compounds, including crystalline Chevrel-phase chalcogenides, nanostructured Ru and Ru–Se clusters, and Ru–N chelate compounds. This paper is dedicated to Professor Su-Il Pyun, who has pioneered advances in interfacial electrochemistry in the field of corrosion and materials science in South Korea, on the occasion of his 65th birthday.  相似文献   

12.
The effects of RuO(x) structure on the selective oxidation of methanol to methyl formate (MF) at low temperatures were examined on ZrO(2)-supported RuO(x) catalysts with a range of Ru surface densities (0.2-3.8 Ru/nm(2)). Their structure was characterized using complementary methods (X-ray diffraction, Raman and X-ray photoelectron spectra, and reduction dynamics). The structure and reactivity of RuO(x) species change markedly with Ru surface density. RuO(x) existed preferentially as RuO(4)(2-) species below 0.4 Ru/nm(2), probably as isolated Zr(RuO(4))(2) interacting with ZrO(2) surfaces. At higher surface densities, highly dispersed RuO(2) domains coexisted with RuO(4)(2-) and ultimately formed small clusters and became the prevalent form of RuO(x) above 1.9 Ru/nm(2). CH(3)OH oxidation rates per Ru atom and per exposed Ru atom (turnover rates) decreased with increasing Ru surface density. This behavior reflects a decrease in intrinsic reactivity as RuO(x) evolved from RuO(4)(2-) to RuO(2), a conclusion confirmed by transient anaerobic reactions of CH(3)OH and by an excellent correlation between reaction rates and the number of RuO(4)(2-) species in RuO(x)/ZrO(2) catalysts. The high intrinsic reactivity of RuO(4)(2-) structures reflects their higher reducibility, which favors the reduction process required for the kinetically relevant C-H bond activation step in redox cycles using lattice oxygen atoms involved in CH(3)OH oxidation catalysis. These more reactive RuO(4)(2-) species and the more exposed ZrO(2) surfaces on samples with low Ru surface density led to high MF selectivities (e.g. approximately 96% at 0.2 Ru/nm(2)). These findings provide guidance for the design of more effective catalysts for the oxidation of alkanes, alkenes, and alcohols by the synthesis of denser Zr(RuO(4))(2) monolayers on ZrO(2) and other high surface area supports.  相似文献   

13.
Mn-Al和Cu-Mn-Al复合氧化物催化苯甲醇选择氧化反应   总被引:3,自引:3,他引:0  
吴藏藏  郑丽  徐秀峰 《分子催化》2016,30(6):532-539
用溶胶-凝胶法制备了不同组成的Mn-Al和Cu-Mn-Al复合氧化物两组催化剂,用于苯甲醇选择氧化反应.用X射线衍射(XRD)、N2物理吸附(BET)、扫描电镜(SEM)、H_2程序升温还原(H_2-TPR)、O_2程序升温脱附(O_2-TPD)和X射线光电子能谱(XPS)技术对催化剂进行了结构表征,考察了催化剂组成对催化活性的影响.结果表明:以甲苯为溶剂,O_2为氧化剂,353 K反应5 h,Mn_2Al和Cu_(0.3)Mn_(0.7)Al_2催化剂上的苯甲醇转化率分别为36.6%和40.9%,苯甲醛选择性均为100%.进一步研究表明:催化剂活性与其H2还原性和O_2吸附性有关,高活性的催化剂吸附氧多,生成的活性氧易参与反应.  相似文献   

14.
It is a challenging task to promote the activity and selectivity of a catalyst via precisely engineering the microenvironment, an important factor related with the catalytic performance of natural catalysts. Motivated by the water effect in promoting the catalytic activity explored in this work, a nanoreactor modified with phosphine ligand enabled the efficient hydrogenation of benzoic acid (BA) over Ru nanoparticles (NPs) in organic solvent under mild conditions, which cannot be achieved in unmodified nanoreactors. Both density functional theory (DFT) calculations and catalytic performance tests showed that the phosphine ligands can manipulate the adsorption strength of BA on Ru NPs by tuning the surface properties as well as preferentially interacting with the carboxyl of BA. The insights obtained in the present study provide a novel concept of nanoreactor design by anchoring ligands near catalytically active centers.  相似文献   

15.
宗玥 《分子催化》2014,(4):336-343
将导热性能良好的泡沫铝作为载体,羰基钌为前驱体制备了一系列不同形态的钌基催化剂应用于N2O的低温催化分解研究.采用XRD、XPS、SEM、TEM、BET、H2-TPR等方法对催化剂进行了表征,于石英管固定床反应器上对催化剂性能进行了评价.重点考察了泡沫铝作为催化剂载体的可行性、载体的处理方法对催化剂活性的影响以及RuO2、Ru、Ru3(CO)12所表现出的活性差异.结果表明:泡沫铝作为催化剂载体,能够促进N2O的催化分解;泡沫铝经H2O2处理有利于提高其对活性中心的附着力,提高催化活性;N2O浓度为1%,Ru负载量为0.3%,活性中心分别为Ru3(CO)12、Ru、RuO2时,N2O完全转化温度依次为285、380和415℃;活性较高的Ru3(CO)12/泡沫铝催化剂在长时间作用后活性组分转变为RuO2.  相似文献   

16.
改性二氧化钛负载贵金属Ru催化剂催化降解苯胺溶液   总被引:2,自引:0,他引:2  
苯胺类废水污染物具有结构复杂、浓度高、不易生物降解、生物毒性大等特点,传统的苯胺降解措施存在着许多弊端,很难达到排放标准.催化湿法氧化技术(CWAO)主要针对降解高浓度难降解的有机废水,表现出降解效率高、反应时间短、对生物毒性物质的废水降解效果良好等优点,越来越受到人们的重视.但催化剂在使用过程中,需要在高温高压下进行,且有机物降解产生了有机酸,使得催化剂的活性组分流失和载体的物理化学性质发生变化,导致其催化活性下降.因此,需要开发出一种降解活性高,性能稳定的催化剂成为此技术在工业中广泛应用的关键.本文采用溶胶凝胶法对二氧化钛进行改性,制备了Ti0.9Zr0.1O2和Ti0.9Ce0.1O2载体,采用过量浸渍法将三氯化钌负载到载体表面制备了2%Ru/Ti0.9Zr0.1O2和2%Ru/Ti0.9Ce0.1O2催化剂.在高温高压反应条件下,以苯胺为催化湿法氧化污染物,对不同催化剂湿法降解苯胺进行比较研究,系统地探究了催化降解的反应温度和反应压力对苯胺降解的影响.此外,利用HPLC-MS鉴定出催化降解产生的中间产物,确定了催化降解的反应路径图.在改性的催化剂中,2%Ru/Ti0.9Zr0.1O2催化剂表现出最高的催化降解活性和稳定性.在初始苯胺浓度4 g/L,催化剂浓度4 g/L,反应温度180℃,O2压力1.5 MPa下,反应时间5 h后,苯胺完全转化,COD转化率达88.3%.并且催化剂进行三次循环试验后,苯胺转化率仍接近100%.X射线衍射和N2物理吸附结果表明,Ce,Zr掺杂到TiO2晶格中形成了共溶体,其晶格尺寸更小,比表面积和孔体积更大.负载贵金属后,并未出现其他晶相,说明贵金属均匀分散在载体表面.透射电镜结果表明,贵金属负载在改性TiO2上表现出较好的分散性和较小的颗粒尺寸,为催化降解苯胺提供更多的催化活性位点,而Ru/TiO2催化剂表面,贵金属发生团聚现象且颗粒尺寸大.X射线光电子能谱结果表明,Ce,Zr的掺杂使得TiO2表面活性氧和四价Ru的含量增加,更多的表面活性氧成为催化降解苯胺的直接原因.H2程序升温还原结果表明,在300?400oC处还原峰对应于催化剂载体晶格氧的还原,改性后,其还原峰增至2倍,即使在贫氧环境下,改性催化剂可以及时从载体中释放晶格氧,为催化降解苯胺提供更多的活性氧.  相似文献   

17.
Smooth and defect-rich Ru(0001) surfaces prepared under ultrahigh-vacuum (UHV) conditions have been loaded with oxygen under high-pressure (p 相似文献   

18.
以不同温度焙烧TiO(OH)_2得到的TiO_2为载体,采用湿法浸渍法制备RuO_2/TiO_2-C(C=450、550、650及750℃)催化剂,利用XRD、N_2吸附-脱附、TEM和H_2-TPR等表征手段研究催化剂的物理化学性质,并对其在HCl氧化反应中的催化性能进行考察.结果表明:载体焙烧温度对催化剂的结构与活性有显著影响.随着载体焙烧温度(≤650℃)的升高,RuO_2与TiO_2之间的晶面匹配度逐渐变高,促进了RuO_2在TiO_2表面的分散,其中RuO_2/TiO_2-650催化剂表现出最优的催化性能.而当载体焙烧温度过高时,RuO_2/TiO_2-750催化剂的反应活性大大下降,可能是由于过高的焙烧温度导致载体出现严重的烧结团聚现象,以及RuO_2与TiO_2之间过强的相互作用,阻碍了HCl氧化反应的进行.此外,减小RuO_2的粒径可以促进HCl氧化活性的提升.动力学结果显示,催化剂表面的HCl氧化反应主要受O_2分压的影响,表明O_2从催化剂表面的解离吸附为决速步骤.  相似文献   

19.
VPO催化剂制备条件对其催化甲苯氨氧化反应性能的影响   总被引:1,自引:0,他引:1  
 用浸渍法制备了负载型钒磷氧(VPO)催化剂,并以甲苯氨氧化合成苯甲腈为探针反应,考察了载体、还原剂、P/V比和V2O5负载量对催化剂性能的影响. 结果表明,大比表面积SiO2负载的VPO催化剂性能稳定,在高温下也具有较好的选择性. 采用不同还原剂制备的催化剂在反应一段时间后活性趋于一致,表明催化剂活性中心是在反应气氛下形成的. P/V比对催化剂活性和结构影响较大,P的加入破坏了V2O5的晶型结构,使磷酸盐物种从催化剂体相向表面聚集,减少了催化剂表面存在的过度氧化物种O-和O-2的数量,选择性氧化物种晶格氧(O2-)起主要氧化作用,提高了催化剂的选择性. V2O5负载量增大,催化剂活性提高,但生成苯甲腈的选择性降低. 表面单分子层覆盖的VOx可能是反应的活性位和选择性位.  相似文献   

20.
Alkaline earth metal (Mg,Ca,Sr and Ba)-doped Mo-V-Sb-O x catalysts,prepared by a dry-up method,have been investigated for their catalytic performance in the oxidation of propane under different reaction conditions.The catalysts have been characterized by N2 adsorption-desorption,temperature-programmed desorption (TPD) of NH3,SEM and XRD.Influence of water vapor on the catalytic performance,particularly on the selectivities to acetic acid and acrylic acid,has also been studied.The selectivity to acrylic acid was improved significantly by the doping of alkaline earth metals to Mo-V-Sb-O x catalysts.The surface acidic sites of the catalyst decreased with the doping of the catalyst with alkaline earth metals,which ultimately was found to be beneficial for obtaining high selectivity to acrylic acid.The catalytic activity and product selectivities were found to be influenced by the reaction temperature,C3H8/O2 ratio and space velocity.A significant improvement in the selectivity to acrylic acid has also been observed by the addition of water vapor in the feed of propane and oxygen in the oxidation of propane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号