首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The standard two-dimensional uniformly driven diffusive model is simulated extensively for much larger systems with a multi-spin coding technique. The nonequilibrium phase transition is analyzed with anisotropic finite-size scaling both at the critical point and off the critical point. The field-theoretic values of critical exponents fit the data well at and aboveT c . BelowT c the scaling is rather difficult and the results are not conclusive.  相似文献   

2.
The Ising square lattice with nearest-neighbor exchangeJ>0 and a free surface at which a boundary magnetic fieldH 1 acts has a second-order wetting transition. We study the surface excess magnetization and the susceptibility ofL×M lattices by Monte Carlo simulation and probe the critical behavior of this wetting transition, applying finite-size scaling methods. For the cases studied, the results are not consistent with the presumably exactly known values of the critical exponents, because the asymptotic critical region has not yet been reached. Implication of our results for critical wetting in three dimensions and for the application of the present model to adsorbed wetting layers at surface steps are briefly discussed.Alexander von Humboldt-Fellow  相似文献   

3.
The scaling exponent and the scaling function for the 1D single-species coagulation model (A+AA) are shown to be universal, i.e., they are not influenced by the value of the coagulation rate. They are independent of the initial conditions as well. Two different numerical methods are used to compute the scaling properties of the concentration: Monte Carlo simulations and extrapolations of exact finite-lattice data. These methods are tested in a case where analytical results are available. To obtain reliable results from finite-size extrapolations, numerical data for lattices up to ten sites are sufficient.  相似文献   

4.
Finite-size scaling is studied for the three-state Potts model on a simple cubic lattice. We show that the specific heat and the magnetic susceptibility scale accurately as the volume. The correlation length exhibits behaviors expected for a genuine first-order transition; the one extracted from the unsubtracted correlation function shows a characteristic finite-size behavior, whereas the physical correlation length that characterizes the first excited state stays at a finite value and is discontinuous at the transition point.  相似文献   

5.
We study the roughening transition of an interface in an Ising system on a 3D simple cubic lattice using a finite-size scaling method. The particular method has recently been proposed and successfully tested for various solid-on-solid models. The basic idea is the matching of the renormalization-groupflow of the interface with that of the exactly solvable body-centered cubic solid-on-solid model. We unambiguously confirm the Kosterlitz-Thouless nature of the roughening transition of the Ising interface. Our result for the inverse transition temperatureK r=0.40754(5) is almost two orders of magnitude more accurate than the estimate of Mon, Landau, and Stauffer.  相似文献   

6.
Various thermal equilibrium and nonequilibrium phase transitions exist where the correlation lengths in different lattice directions diverge with different exponentsv ,v : uniaxial Lifshitz points, the Kawasaki spin exchange model driven by an electric field, etc. An extension of finite-size scaling concepts to such anisotropic situations is proposed, including a discussion of (generalized) rectangular geometries, with linear dimensionL in the special direction and linear dimensionsL in all other directions. The related shape effects forL L but isotropic critical points are also discussed. Particular attention is paid to the case where the generalized hyperscaling relationv +(d–1)v =+2 does not hold. As a test of these ideas, a Monte Carlo simulation study for shape effects at isotropic critical point in the two-dimensional Ising model is presented, considering subsystems of a 1024x1024 square lattice at criticality.Visiting Supercomputer Senior Scientist at Rutgers University.  相似文献   

7.
8.
We consider two-dimensional Ising models with randomly distributed ferromagnetic bonds and study the local critical behavior at defect lines by extensive Monte Carlo simulations. Both for ladder- and chain-type defects, nonuniversal critical behavior is observed: the critical exponent of the defect magnetization is found to be a continuous function of the strength of the defect coupling. Analyzing corresponding stability conditions, we obtain new evidence that the critical exponent of the bulk correlation length of the random Ising model does not depend on dilution, i.e., =1.  相似文献   

9.
10.
Extensive Monte Carlo simulations have been performed to analyze the dynamical behavior of the three-dimensional Ising model with local dynamics. We have studied the equilibrium correlation functions and the power spectral densities of odd and even observables. The exponential relaxation times have been calculated in the asymptotic one-exponential time region. We find that the critical exponentz=2.09 ±0.02 characterizes the algebraic divergence with lattice size for all observables. The influence of scaling corrections has been analyzed. We have determined integrated relaxation times as well. Their dynamical exponentz int agrees withz for correlations of the magnetization and its absolute value, but it is different for energy correlations. We have applied a scaling method to analyze the behavior of the correlation functions. This method verifies excellent scaling behavior and yields a dynamical exponentz scal which perfectly agrees withz.  相似文献   

11.
Then-orbital gauge-invariant model of disordered electronic systems proposed by Wegner is studied in the regime of dominant diagonal disorder. Analyticity of the density of states is established in two cases: (a) when the number of orbitals is small, (b) when the number of orbitals is large and the energy is in the expected extended states region.  相似文献   

12.
The percolation transition of geometric clusters in the three-dimensional, simple cubic, nearest neighbor Ising lattice gas model is investigated in the temperature and concentration region inside the coexistence curve. We consider quenching experiments, where the system starts from an initially completely random configuration (corresponding to equilibrium at infinite temperature), letting the system evolve at the considered temperature according to the Kawasaki spinexchange dynamics. Analyzing the distributionn l(t) of clusters of sizel at timet, we find that after a time of the order of about 100 Monte Carlo steps per site a percolation transition occurs at a concentration distinctly lower than the percolation concentration of the initial random state. This dynamic percolation transition is analyzed with finite-size scaling methods. While at zero temperature, where the system settles down at a frozen-in cluster distribution and further phase separation stops, the critical exponents associated with this percolation transition are consistent with the universality class of random percolation, the critical behavior of the transient time-dependent percolation occurring at nonzero temperature possibly belongs to a different, new universality class.  相似文献   

13.
We determine by Monte Carlo simulations the width of an interface between the stable phase and the metastable phase in a two-dimensional Ising model with a magnetic field, in the case of nonconversed order parameter (Glauber dynamics). At zero temperature, the width increases ast with–1/3, as predicted by earlier theories. As temperature increases, the value of the effective exponent that we measure decreases toward the value 1/4, which is the value in the absence of magnetic field.  相似文献   

14.
In the last few years there has been significant interest in the field of thin films, due to numerous specific phenomena related to the low dimension of these systems, and to the large opportunities in development of high technologies based on their specific magnetic and electronic properties. When dealing with systems of reduced dimensionality it is important to take into account the influence of magnetic anisotropies. In this paper we investigate the magnetic properties of bilayer thin film. This behavior is modeled using Monte Carlo simulations, in the Extended Anisotropic Heisenberg Model. The magnetization, out-of-plane and in-plane magnetic susceptibilities, and also the specific heat bearings according to temperature are investigated in order to find the potential magnetic ordering phases and the critical temperatures, for two sets parameter assignments. For quasi-uniform anisotropy parameters of the film we detect the ferromagnetism-paramagnetism transition and then, by changing the model parameters values, we relieve a short range ferromagnetic ordering phase arising from the antiferromagnetic base layer coupling influence and from easy-plane anisotropy discontinuity on the layers interface.   相似文献   

15.
It is shown how the weak disorder expansion of the Liapunov exponents of a product of random matrices can be derived when the unperturbed matrices have two degenerate eigenvalues. The general expression of the Liapunov exponents at the lowest nontrivial order in disorder is given.  相似文献   

16.
We study diluted antiferromagnetic Ising models on triangular and kagome lattices in a magnetic field, using the replica-exchange Monte Carlo method. We observe seven and five plateaus in the magnetization curve of the diluted antiferromagnetic Ising model on the triangular and kagome lattices, respectively, when a magnetic field is applied. These observations contrast with the two plateaus observed in the pure model. The origin of multiple plateaus is investigated by considering the spin configuration of triangles in the diluted models. We compare these results with those of a diluted antiferromagnetic Ising model on the three-dimensional pyrochlore lattice in a magnetic field pointing in the [111] direction, sometimes referred to as the “kagome-ice” problem. We discuss the similarity and dissimilarity of the magnetization curves of the “kagome-ice” state and the two-dimensional kagome lattice.  相似文献   

17.
Using results from conformal field theory, we compute several universal amplitude ratios for the two-dimensional Ising model at criticality on a symmetric torus. These include the correlation-length ratio x =lim L (L)/L and the first four magnetization moment ratios V 2n = 2n / 2 n . As a corollary we get the first four renormalized 2n-point coupling constants for the massless theory on a symmetric torus, G*2n . We confirm these predictions by a high-precision Monte Carlo simulation.  相似文献   

18.
The effects of second-neighbor spin coupling interactions and a magnetic field are investigated on the free energies of a finite-size 1-D Ising model. For both ferromagnetic of nearest neighbor (NN) and next-nearest neighbor (NNN) spin coupling interactions, the finite-size free energy first increases and then approaches a constant value for any size of the spin chain. In contrast, when NNN and NN spin coupling interactions are antiferromagnetic and ferromagnetic, respectively, the finite-size free energy gradually decreases by increasing the competition factor and eventually vanishes for large values of it. When a magnetic field is applied, the finite-size free energy decreases with respect to the case of zero magnetic fields for both ferromagnetic and antiferromagnetic spin coupling interactions. Deviation of free energy per size for finite-size systems relative to the infinite system increases when the spin coupling interactions as well as the f parameter (the ratio of the magnetic field to NN spin coupling interaction) increase.  相似文献   

19.
The p-state mean-field Potts glass with bimodal bond distribution (±J) is studied by Monte Carlo simulations, both for p = 3 and p = 6 states, for system sizes from N = 5 to N = 120 spins, considering particularly the finite-size scaling behavior at the exactly known glass transition temperature T c. It is shown that for p = 3 the moments q (k) of the spin-glass order parameter satisfy a simple scaling behavior, being the appropriate scaling function and T the temperature. Also the specific heat maxima have a similar behavior, , while moments of the magnetization scale as . The approach of the positions T max of these specific heat maxima to T c as N is nonmonotonic. For p = 6 the results are compatible with a first-order transition, q (k) (q jump)k as N but since the order parameter q jump at T c is rather small, a behavior q (k) N -k/3 as N also is compatible with the data. Thus no firm conclusions on the finite-size behavior of the order parameter can be drawn. The specific heat maxima c V max behave qualitatively in the same way as for p = 3, consistent with the prediction that there is no latent heat. A speculative phenomenological discussion of finite-size scaling for such transitions is given. For small N (N 15 for p = 3, N 12 for p = 6) the Monte Carlo data are compared to exact partition function calculations, and excellent agreement is found. We also discuss ratios , for various quantities X, to test the possible lack of self-averaging at T c.  相似文献   

20.
The competition among spin glass (SG), antiferromagnetism (AF) and local pairing superconductivity (PAIR) is studied in a two-sublattice fermionic Ising spin glass model with a local BCS pairing interaction in the presence of an applied magnetic transverse field Γ. In the present approach, spins in different sublattices interact with a Gaussian random coupling with an antiferromagnetic mean J0 and standard deviation J. The problem is formulated in the path integral formalism in which spin operators are represented by bilinear combinations of Grassmann variables. The saddle-point Grand Canonical potential is obtained within the static approximation and the replica symmetric ansatz. The results are analysed in phase diagrams in which the AF and the SG phases can occur for small g (g is the strength of the local superconductor coupling written in units of J), while the PAIR phase appears as unique solution for large g. However, there is a complex line transition separating the PAIR phase from the others. It is second order at high temperature that ends in a tricritical point. The quantum fluctuations affect deeply the transition lines and the tricritical point due to the presence of Γ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号