首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Three isostructural metal-organic polyhedral cage based frameworks (denoted NOTT-113, NOTT-114 and NOTT-115) with (3,24)-connected topology have been synthesised by combining hexacarboxylate isophthalate linkers with {Cu(2)(RCOO)(4)} paddlewheels. All three frameworks have the same cuboctahedral cage structure constructed from 24 isophthalates from the ligands and 12 {Cu(2)(RCOO)(4)} paddlewheel moieties. The frameworks differ only in the functionality of the central core of the hexacarboxylate ligands with trimethylphenyl, phenylamine and triphenylamine moieties in NOTT-113, NOTT-114 and NOTT-115, respectively. Exchange of pore solvent with acetone followed by heating affords the corresponding desolvated framework materials, which show high BET surface areas of 2970, 3424 and 3394 m(2) g(-1) for NOTT-113, NOTT-114 and NOTT-115, respectively. Desolvated NOTT-113 and NOTT-114 show high total H(2) adsorption capacities of 6.7 and 6.8 wt%, respectively, at 77 K and 60 bar. Desolvated NOTT-115 has a significantly higher total H(2) uptake of 7.5 wt% under the same conditions. Analysis of the heats of adsorption (Q(st)) for H(2) reveals that with a triphenylamine moiety in the cage wall, desolvated NOTT-115 shows the highest value of Q(st) for these three materials, indicating that functionalisation of the cage walls with more aromatic rings can enhance the H(2)/framework interactions. In contrast, measurement of Q(st) reveals that the amine-substituted trisalkynylbenzene core used in NOTT-114 gives a notably lower H(2)/framework binding energy.  相似文献   

3.
Owing to their high uptake capacity at low temperature and excellent reversibility kinetics, metal-organic frameworks have attracted considerable attention as potential solid-state hydrogen storage materials. In the last few years, researchers have also identified several strategies for increasing the affinity of these materials towards hydrogen, among which the binding of H(2) to unsaturated metal centers is one of the most promising. Herein, we review the synthetic approaches employed thus far for producing frameworks with exposed metal sites, and summarize the hydrogen uptake capacities and binding energies in these materials. In addition, results from experiments that were used to probe independently the metal-hydrogen interaction in selected materials will be discussed.  相似文献   

4.
Strategies for hydrogen storage in metal--organic frameworks   总被引:11,自引:0,他引:11  
Increased attention is being focused on metal-organic frameworks as candidates for hydrogen storage materials. This is a result of their many favorable attributes, such as high porosity, reproducible and facile syntheses, amenability to scale-up, and chemical modification for targeting desired properties. A discussion of several strategies aimed at improving hydrogen uptake in these materials is presented. These strategies include the optimization of pore size and adsorption energy by linker modification, impregnation, catenation, and the inclusion of open metal sites and lighter metals.  相似文献   

5.
6.
7.
A highly porous member of isoreticular MFU‐4‐type frameworks, [Zn5Cl4(BTDD)3] (MFU‐4l(arge)) (H2‐BTDD=bis(1H‐1,2,3‐triazolo[4,5‐b],[4′,5′‐i])dibenzo[1,4]dioxin), has been synthesized using ZnCl2 and H2‐BTDD in N,N‐dimethylformamide as a solvent. MFU‐4l represents the first example of MFU‐4‐type frameworks featuring large pore apertures of 9.1 Å. Here, MFU‐4l serves as a reference compound to evaluate the origin of unique and specific gas‐sorption properties of MFU‐4, reported previously. The latter framework features narrow‐sized pores of 2.5 Å that allow passage of sufficiently small molecules only (such as hydrogen or water), whereas molecules with larger kinetic diameters (e.g., argon or nitrogen) are excluded from uptake. The crystal structure of MFU‐4l has been solved ab initio by direct methods from 3D electron‐diffraction data acquired from a single nanosized crystal through automated electron diffraction tomography (ADT) in combination with electron‐beam precession. Independently, it has been solved using powder X‐ray diffraction. Thermogravimetric analysis (TGA) and variable‐temperature X‐ray powder diffraction (XRPD) experiments carried out on MFU‐4l indicate that it is stable up to 500 °C (N2 atmosphere) and up to 350 °C in air. The framework adsorbs 4 wt % hydrogen at 20 bar and 77 K, which is twice the amount compared to MFU‐4. The isosteric heat of adsorption starts for low surface coverage at 5 kJ mol?1 and decreases to 3.5 kJ mol?1 at higher H2 uptake. In contrast, MFU‐4 possesses a nearly constant isosteric heat of adsorption of ca. 7 kJ mol?1 over a wide range of surface coverage. Moreover, MFU‐4 exhibits a H2 desorption maximum at 71 K, which is the highest temperature ever measured for hydrogen physisorbed on metal–organic frameworks (MOFs).  相似文献   

8.
Metal-organic frameworks (MOFs), {[Cu(2)(bdcppi)(dmf)(2)]·10DMF·2H(2)O}(n) (SNU-50) and {[Zn(2)(bdcppi)(dmf)(3)]·6DMF·4H(2)O}(n) (SNU-51), have been prepared by the solvothermal reactions of N,N'-bis(3,5-dicarboxyphenyl)pyromellitic diimide (H(4)BDCPPI) with Cu(NO(3))(2) and Zn(NO(3))(2), respectively. Framework SNU-50 has an NbO-type net structure, whereas SNU-51 has a PtS-type net structure. Desolvated solid [Cu(2)(bdcppi)](n) (SNU-50'), which was prepared by guest exchange of SNU-50 with acetone followed by evacuation at 170 °C, adsorbs high amounts of N(2), H(2), O(2), CO(2), and CH(4) gases due to the presence of a vacant coordination site at every metal ion, and to the presence of imide groups in the ligand. The Langmuir surface area is 2450 m(2) g(-1). It adsorbs H(2) gas up to 2.10 wt% at 1 atm and 77 K, with zero coverage isosteric heat of 7.1 kJ mol(-1), up to a total of 7.85 wt% at 77 K and 60 bar. Its CO(2) and CH(4) adsorption capacities at 298 K are 77 wt% at 55 bar and 17 wt% at 60 bar, respectively. Of particular note is the O(2) adsorption capacity of SNU-50' (118 wt% at 77 K and 0.2 atm), which is the highest reported so far for any MOF. By metal-ion exchange of SNU-51 with Cu(II), {[Cu(2)(bdcppi)(dmf)(3)]·7DMF·5H(2)O}(n) (SNU-51-Cu(DMF)) with a PtS-type net was prepared, which could not be synthesized by a direct solvothermal reaction.  相似文献   

9.
Two isomorphous 3D metal-organic frameworks, {[Cu2(BPnDC)2(bpy)].8 DMF.6 H2O}n (1) and {[Zn2(BPnDC)2(dabco)].13 DMF.3 H2O}n (2), have been prepared by the solvothermal reactions of benzophenone 4,4'-dicarboxylic acid (H2BPnDC) with Cu(NO3)(2).2.5 H2O and 4,4'-bipyridine (bpy), and with Zn(NO3)(2).6 H2O and 4-diazabicyclo[2.2.2]octane (dabco), respectively. Compounds 1 and 2 are composed of paddle-wheel {M2(O2CR)4} cluster units, and they generate 2D channels with two different large pores (effective size of larger pore: 18.2 A for 1, 11.4 A for 2). The framework structure of desolvated solid, [Cu2(BPnDC)2(bpy)]n (SNU-6; SNU=Seoul National University), is the same as that of 1, as evidenced by powder X-ray diffraction patterns. SNU-6 exhibits high permanent porosity (1.05 cm3 g(-1)) with high Langmuir surface area (2910 m2 g(-1)). It shows high H2 gas storage capacity (1.68 wt % at 77 K and 1 atm; 4.87 wt % (excess) and 10.0 wt % (total) at 77 K and 70 bar) with high isosteric heat (7.74 kJ mol(-1)) of H2 adsorption as well as high CO2 adsorption capability (113.8 wt % at 195 K and 1 atm). Compound 2 undergoes a single-crystal-to-single-crystal transformation on guest exchange with n-hexane to provide {[Zn2(BPnDC)2(dabco)].6 (n-hexane).3 H2O}n (2hexane). The transformation involves dynamic motion of the molecular components in the crystal, mainly a bending motion of the square planes of the paddle-wheel units resulting from rotational rearrangement of phenyl rings and carboxylate planes of BPnDC2-.  相似文献   

10.
11.
12.
The gas-phase loading of [Zn(4)O(btb)(2)](8) (MOF-177; H(3)btb=1,3,5-benzenetribenzoic acid) with the volatile platinum precursor [Me(3)PtCp'] (Cp'=methylcyclopentadienyl) was confirmed by solid state (13)C magic angle spinning (MAS)-NMR spectroscopy. Subsequent reduction of the inclusion compound [Me(3)PtCp'](4)@MOF-177 by hydrogen at 100 bar and 100 degrees C for 24 h was carried out and gave rise to the formation of platinum nanoparticles in a size regime of 2-5 nm embedded in the unchanged MOF-177 host lattice as confirmed by transmission electron microscopy (TEM) micrographs and powder X-ray diffraction (PXRD). The room-temperature hydrogen adsorption of Pt@MOF-177 has been followed in a gravimetric fashion (magnetic suspension balance) and shows almost 2.5 wt % in the first cycle, but is decreased down to 0.5 wt % in consecutive cycles. The catalytic activity of Pt@MOF-177 towards the solvent- and base-free room temperature oxidation of alcohols in air has been tested and shows Pt@MOF-177 to be an efficient catalyst in the oxidation of alcohols.  相似文献   

13.
A combination of topological rules and quantum chemical calculations has facilitated the development of a rational metal–organic framework (MOF) synthetic strategy using the tritopic benzene‐1,3,5‐tribenzoate (btb) linker and a neutral cross‐linker 4,4′‐bipyridine (bipy). A series of new compounds, namely [M2(bipy)]3(btb)4 (DUT‐23(M), M=Zn, Co, Cu, Ni), [Cu2(bisqui)0.5]3(btb)4 (DUT‐24, bisqui=diethyl (R,S)‐4,4′‐biquinoline‐3,3′‐dicarboxylate), [Cu2(py)1.5(H2O)0.5]3(btb)4 (DUT‐33, py=pyridine), and [Cu2(H2O)2]3(btb)4 (DUT‐34), with high specific surface areas and pore volumes (up to 2.03 m3 g?1 for DUT‐23(Co)) were synthesized. For DUT‐23(Co), excess storage capacities were determined for methane (268 mg g?1 at 100 bar and 298 K), hydrogen (74 mg g?1 at 40 bar and 77 K), and n‐butane (99 mg g?1at 293 K). DUT‐34 is a non‐cross‐linked version of DUT‐23 (non‐interpenetrated pendant to MOF‐14) that possesses open metal sites and can therefore be used as a catalyst. The accessibility of the pores in DUT‐34 to potential substrate molecules was proven by liquid phase adsorption. By exchanging the N,N donor 4,4′‐bipyridine with a substituted racemic biquinoline, DUT‐24 was obtained. This opens a route to the synthesis of a chiral compound, which could be interesting for enantioselective separation.  相似文献   

14.
A new singly charged pyridinium axle was prepared and combined with disulfonated dibenzo[24]crown-8 ether to form a [2]pseudorotaxane. The reaction of this new, anionic ligand with Zn(II) ions, under various crystallization conditions, resulted in the formation of three metal-organic rotaxane framework (MORF) solids; a one-periodic ML coordination polymer and two, two-periodic ML(2) square grid frameworks. The layers of square grids can be pillared to create full three-periodic MORF structures, which have completely neutral frameworks and are porous. These three-periodic materials represent the first examples of neutral porous MOFs in which one (or more) of the linkers is a mechanically interlocked molecule (MIM).  相似文献   

15.
16.
GO MOFs! Azobenzoic acid functionalized graphene (A-GO) can act as a structure-directing template that influences hydrogel formation together with metal-organic frameworks (MOFs). Zn(2+) MOFs of pyridine derivatives work as framework linkers between the A-GO sheets (MOF-A-GO, see figure). MOF-A-GO exhibits a strong fluorescence enhancement upon gel formation. In addition, MOF-A-GO selectively recognizes trinitrotoluene.  相似文献   

17.
Chiral metal–organic frameworks with a three‐dimensional network structure and wide‐open pores (>30 Å) were obtained by using chiral trifunctional linkers and multinuclear zinc clusters. The linkers, H3ChirBTB‐n, consist of a 4,4′,4′′‐benzene‐1,3,5‐triyltribenzoate (BTB) backbone decorated with chiral oxazolidinone substituents. The size and polarity of these substituents determines the network topology formed under solvothermal synthesis conditions. The resulting chiral MOFs adsorb even large molecules from solution. Moreover, they are highly active Lewis acid catalysts in the Mukaiyama aldol reaction. Due to their chiral functionalization, they show significant levels of enantioselectivity, thereby proving the validity of the modular design concept employed.  相似文献   

18.
Immobilization of functional sites within metal-organic frameworks (MOFs) is very important for their ability to recognize small molecules and thus for their functional properties. The metalloligand approach has enabled us to rationally immobilize a variety of different functional sites such as open metal sites, catalytic active metal sites, photoactive metal sites, chiral pore environments, and pores of tunable sizes and curvatures into mixed metal-organic frameworks (M'MOFs). In this Minireview, we highlight some important functional M'MOFs with metalloligands for gas storage and separation, enantioselective separation, heterogeneous asymmetric catalysis, sensing, and as photoactive and nanoscale drug delivery and biomedical imaging materials.  相似文献   

19.
20.
Space division with red cubes: Doping metal-organic frameworks with another metal component gives a further opportunity to tune their properties. Recent work successfully introduced europium into the inorganic nodes of frameworks. Although the doping element does not affect the framework topology, highly improved emissive performance was measured thanks to the intrinsic red emission of europium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号