首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 433 毫秒
1.
催化剂的形成和使用环境对催化剂的结构和性能会产生重要的影响。本文采用完全液相法,以PEG-400和液体石蜡分别作为热处理介质制备Cu-Zn-Al催化剂,用X射线粉末衍射、H2程序升温还原、N2吸附、X射线光电子能谱对其进行表征,考察热处理介质对催化剂结构的影响;以相应的热处理介质作为浆态床反应介质,考察介质对CO加氢催化反应性能的影响。结果表明,PEG-400作为热处理介质有助于提高催化剂的比表面积、ZnO的分散度和表面铜含量,催化剂中存在难还原的Cu ,有利于形成Cu -Cu0之间的协同作用;在反应过程中,PEG-400作为反应介质可以抑制铜晶粒的长大,有利于乙醇的生成及C5烃选择性的提高,但催化剂的结构和表面组成会发生较大的变化。  相似文献   

2.
Various Cu/ZnO/Al2O3 catalysts have been synthesized by different aluminum emulsions as aluminum sources and their performances for methanol synthesis from syngas have been investigated. The influences of preparation methods of aluminum emulsions on physicochemical and catalytic properties of catalysts were studied by XRD, SEM, XPS, N2 adsorption--desorption techniques and methanol synthesis from syngas. The preparation methods of aluminum emulsions were found to influence the catalytic activity, CuO crystallite size, surface area and Cu0 surface area and reduction process. The results show that the catalyst CN using the aluminum source prepared by addition the ammonia into the aluminum nitrate (NP) exhibited the best catalytic performance for methanol synthesis from syngas.  相似文献   

3.
采用X射线衍射、扫描电镜、原子吸收、程序升温还原、X射线吸收近边吸收谱、X射线光电子能谱、氮吸附等手段对水热合成(HS)、等体积浸渍(PVI)与离子交换(IE)法制备的CuSAPO-34样品进行了表征,并评价了老化前后催化剂上C3H6-SCR与NH3-SCR脱除模拟柴油车尾气中NOx的反应活性.结果表明,IE法制得的催化剂活性最高,尤其在C3H6-SCR低温阶段;PVI法制得的催化剂活性最差.制备方法影响CuSAPO-34催化剂的比表面积、孔径分布和活性组分价态从而改变其催化活性.各催化剂均存在Cu+和Cu2+,但比例明显不同.HS样品以Cu2+为主,另两种样品则含较多的Cu+.老化不仅部分破坏了分子筛的形貌、降低了分子筛的比表面积,尤其是表面Cu含量,而且有部分Cu生成了CuSO4,使得老化后催化剂的脱硝活性降低.PVI法制得的催化剂老化后活性下降幅度最小,表明该分子筛抗老化能力较强.  相似文献   

4.
通过柠檬酸辅助固相研磨法制备铜基催化剂,采用XRD、TPR、TG-DSC、SEM、BET、TEM、XPS、CO_2-TPD等手段对催化剂性能进行表征.结果表明室温固相研磨的前驱体在惰性气体N_2中焙烧使体系中的CuO绝大部分被原位还原成Cu~0,不需外加H_2还原,直接制得了C/I-Cu/ZnO催化剂,催化剂具有中孔.利用高压固定床连续反应装置对催化剂活性进行了评价,结果表明,柠檬酸用量、前驱体焙烧温度、焙烧升温速率等条件对催化剂活性产生影响,当C_6H_8O_7/(Cu+Zn)摩尔比为1.2/1并Cu/Zn摩尔比1/1,前驱体在N_2中以3 K·min~(-1)升温速率于623 K焙烧3 h,制得的C/I-Cu/ZnO催化剂比表面积最大,Cu~0粒径最小,在CO_2加氢合成甲醇反应中表现出最佳的活性,CO_2转化率、甲醇选择性和产率分别达到了28.28%、74.29%和21.01%.与外加H_2还原的C/H-Cu/ZnO催化剂相比,原位还原C/I-Cu/ZnO催化剂比表面积较大,Cu~0的粒径较小,活性较高.  相似文献   

5.
采用完全液相法和溶胶-凝胶法分别制备了组成完全相同的Cu-Zn-Al双功能催化剂,用XRD、氮气吸附-脱附实验和XPS等手段对催化剂的性质进行表征,考察了催化剂对浆态床一步法合成二甲醚反应的催化性能.结果表明,两种方法制备的Cu基催化剂中Cu组分的物相和表面Cu含量明显不同,而催化剂的织构性质基本相同.完全液相法制备的...  相似文献   

6.
采用共沉淀-后浸渍方法制备了表面助剂改性的Cu/ZnO/Al2O3 (CZA)甲醇合成催化剂, 在固定床反应器上以合成气为原料分别考察了三种助剂(Zr、Ba和Mn)对CZA催化剂性能的影响; 以Zr为助剂时反应温度的影响; 并进行了催化稳定性试验. 利用粉末X射线衍射(XRD)、低温氮气吸脱附(N2-sorption)、氧化亚氮(N2O)反应吸附技术、X射线光电子能谱(XPS)、氢气程序升温吸脱附(H2-TPD)、扫描电子显微镜(SEM)和高分辨透射电子显微镜(HR-TEM)技术对催化剂进行了表征.结果显示: 以Zr或Ba作为助剂能够明显提高CZA催化剂耐热前后的甲醇时空收率(STY); Mn的引入降低了CZA催化剂的耐热前活性; Zr的引入降低了CZA催化剂最高活性温度点, 增强了CZA催化剂的催化稳定性; 还原态CZA催化剂表面Cu0和ZnO都能吸附活化氢气, Cu0与ZnO的强相互作用有利于提高催化剂的性能, 耐热后催化剂性能的降低归因于Cu晶粒的长大. 在实验和表征结果基础上,提出了CZA催化剂上合成气制甲醇的“双向同步催化反应历程”.  相似文献   

7.
Hydrogenation of acetophenone over nano‐Cu/SiO2 catalysts was investigated. The catalysts, prepared by a liquid precipitation method using various precipitating agents, were characterized using low‐temperature nitrogen adsorption, X‐ray diffraction, temperature‐programmed desorption of ammonia, hydrogen temperature‐programmed reduction, transmission electron microscopy and X‐ray photoelectron spectroscopy. It was found that the catalysts prepared by a homogeneous precipitation method had better activity and stability than those prepared by a co‐precipitation method. The catalyst prepared using urea as precipitating agent had well‐dispersed copper species, high surface area and abundant pore structure. The catalytic performance and mechanism of the Cu/SiO2 catalysts were further studied. It was found that the activity and stability of the catalysts could be improved by adjusting the proportion of Cu+/(Cu+ + Cu0). The sample prepared using urea as precipitating agent presented higher activity and selectivity. Also, the catalyst prepared using urea maintained a high catalytic performance while being continuously used for 150 h under the optimal reaction conditions.  相似文献   

8.
王瑞玉  李忠 《催化学报》2014,35(1):134-139
以CuCl2为前驱物与HY分子筛进行固相离子交换制备了Cu/Y催化剂,采用热重方法研究了CuCl2与HY分子筛的表面固相离子交换反应,结合活性测试表明催化剂中高度分散的CuCl和离子交换形式的Cu+物种是甲醇氧化羰基化合成碳酸二甲酯的催化活性中心。X射线光电子能谱表征和元素分析结果表明,活性金属Cu主要以CuCl形式存在于分子筛外表面,而在分子筛笼内则以交换的Cu+和少量吸附的CuCl形式存在。与以CuCl为交换铜源所制催化剂相比,以CuCl2为铜源制备的催化剂Cu含量低,催化活性更高。  相似文献   

9.
Microporous NaY zeolite is a common support of Cu catalysts for oxidative carbonylation of methanol, but the dispersion of Cu species on NaY is usually subjected to its micropore size. Here, ordered mesoporous KIT-6 was employed as the support for Cu catalyst and Al was incorporated into its framework to increase the surface acidity, which eventually improves the surface exchange capacity and Cu dispersion. The evolution of the state of Cu species on KIT-6 was analyzed combined with control of Cu loading. The physicochemical properties of the supports and corresponding catalysts were characterized by N2 adsorption–desorption, X-ray diffraction, ammonia temperature programmed desorption, Fourier transform infrared spectra, transmission electron microscopy, hydrogen temperature programmed reduction, and X-ray photoelectron spectroscopy. It was found that mesoporous KIT-6 showed better Cu dispersion than microporous NaY zeolite. Agglomerated CuO, dispersed CuO, and Cu2+ are the major Cu species observed on the catalyst surface. The increased surface acidic sites of KIT-6 by Al incorporation promoted the formation of Cu2+ and dispersion of CuO. With the increase in Cu loading, the Cu2+ content in the catalyst was decreased gradually along with increase in the bulk CuO. It was speculated that some exchanged Cu2+ could be transformed into highly dispersed CuO and even bulk CuO after calcination at a high Cu loading. Combined with the catalyst evaluation results, it was deduced that highly dispersed Cu2+ and CuO particles play significant roles in catalytic activity. The catalyst Cu/Al-K-10 achieved the highest space time yield of dimethyl carbonate of 135.4 mg/(g·h), which is 2.7 times the Cu/K-10 owing to its more dispersed Cu species. This laid the basis for preparing highly dispersed Cu species on mesoporous silica supports.  相似文献   

10.
Carbon monoxide (CO) is a very poisonous gas present in the atmosphere. It has significant effects on human beings, animals, plants and the climate. Automobile vehicle exhaust contributes 64% of the CO pollution in urban areas. To control this exhaust pollution, various types of catalysts in catalytic converters have been investigated. Increasing costs of noble metals as a catalyst in automobile vehicles motivates the investigation of material that can be substituted for noble metals. Among the non-noble metals, copper (Cu) is found to be the most capable and highly active catalyst for CO oxidation, compared to precious metal catalysts. Lower cost, easy availability and advance preparation conditions with stabilizers, promoters and so on, make Cu a good choice as an auto exhaust purification catalyst. The oxidation of CO proceeds very quickly over Cu°, followed by Cu+ and Cu2+. The Cu2O catalyst is more active in an O2-rich atmosphere than in O2-lean conditions. The reduced species of copper (Cu0, Cu+) are essential for better CO oxidation but smaller Cu particles could be less active than the higher ones. There is a great deal of research available on the Cu catalyst for CO oxidation, but there is a gap in the literature for a review article individually applied to the Cu catalyst for CO oxidation. To fill this gap, the present review updates information on Cu catalysts in the purification of exhaust gases.  相似文献   

11.
The Cu/ZSM-5 catalysts prepared by different copper precursors were used for the selective catalytic reduction (SCR) of NO x with NH3. The Cu/ZSM-5 catalyst prepared by the copper nitrate (Cu/ZSM-5-N) presented the best performance among the Cu/ZSM-5 catalysts and showed above 90 % NO x conversion at 225–405 °C. The average particle size of CuO was 5.82, 9.20, and 11.01 nm over Cu/ZSM-5-N, Cu/ZSM-5-S (prepared by copper sulfate), and Cu/ZSM-5-C (prepared by copper chloride), respectively. The Cu/ZSM-5-N catalyst showed the highly dispersed copper species, the strong surface acidity, and the excellent redox ability compared with the Cu/ZSM-5-C and Cu/ZSM-5-S catalysts. The Cu+ and Cu2+ existed in the Cu/ZSM-5 catalysts and the abundant Cu+ over Cu/ZSM-5-N might be responsible for the superior SCR activity.  相似文献   

12.
以FeCrAl合金薄片为基底,Al2O3浆料为过渡胶体,不同摩尔比的Cu、Co为催化活性组分,制备了一系列CuxCo1-x/Al2O3/FeCrAl(x=0-1)新型整体式催化剂.采用X射线粉末衍射(XRD),扫描电子显微镜(SEM),X光电子能谱(XPS)和程序升温还原(TPR)等手段对催化剂的结构进行了表征.在微型固定床反应器上评价了催化剂的催化甲苯燃烧性能.研究结果表明:在所制备的整体式催化剂上,当Cu含量比较低时,形成了Cu-Co-O固溶体;当Cu含量比较高时,可以测得CuO的衍射峰.催化剂表面颗粒大小和形貌与Cu、Co摩尔比密切相关.在催化剂表面,Co以Co2+和Co3+价态存在,而Cu主要以Cu2+价态存在.催化剂中的Cu可以改善Co的氧化还原性,从而有利于催化剂活性的提高.在所制备的催化剂中,Cu0.5Co0.5/Al2O3/FeCrAl催化剂具有最好的活性,甲苯在374oC可以完全催化燃烧消除.  相似文献   

13.
The results of a systematic study of the formation of Cu–Zn, Cu–Zn–Al, Cu–Zn–Cr, Cu–Zn–Si, Cu–Cr, and Cu–Si oxide catalysts with a widely varied ratio between their components are generalized within the chemical approach developed by G.K. Boreskov to establish the quantitative relation between their chemical composition and catalytic activity. Simultaneously, their catalytic properties, such as selectivity and activity, are measured under the same conditions in the methanol synthesis and dehydrogenation and water gas shift reactions, whose common feature is a reductive reaction medium. The activity of Cu–Zn–Al–Cr— Si-oxide catalysts in all the studied reactions is governed by the Cu0 nanoparticles formed on their surface in the process of reductive activation. Nanoparticles of different catalysts have similar sizes (3–8 nm). However, the ratios between the catalytic activities per unit of the copper surface area for catalysts with various structures of their oxide support (spinel, wurtzite, zincsilite, or silica type) are appreciably different in each reaction. The relation between the chemical composition of a catalyst and its catalytic activity in a certain reaction is established by the chemical composition of its precursor representing a hydroxo compound, i.e., the nature of the selected cations and the quantitative ratio between them. The decomposition of hydroxo compounds to oxides (and the further activation of oxides) should be performed at medium temperatures, providing the incomplete elimination of ОН and CO32- anions, i.e., the formation of anion-modified oxides. The structure of the latter and the type of interaction between Cu0 nanoparticles and an oxide support are governed by the structure of the hydroxo precursor compound.  相似文献   

14.
分别以NaOH、Na2CO3、NaHCO3为沉淀剂,采用共沉淀法制备了Cu:Zn摩尔比为2:1的CuO-ZnO催化剂,利用氢气程序升温还原(H2-TPR)、热重(TG)、X射线衍射(XRD)及拉曼光谱(Raman)等技术对催化剂进行了表征,结合甲醛乙炔化活性评价,研究了沉淀剂对催化剂结构及催化性能的影响.结果表明,不同沉淀剂对催化剂中活性组分分散度有较大影响,进而在甲醛乙炔化合成1,4-丁炔二醇反应中表现出不同的催化活性.以Na2CO3为沉淀剂制备的催化剂中形成CuO-ZnO固溶体,提高了CuO的分散度及Cu+在还原性气氛下的稳定性,经活化后可生成较多的活性物种炔化亚铜,表现出最佳的炔化反应活性与1,4-丁炔二醇选择性.  相似文献   

15.
Cu/Zn/Si catalysts with different polyethylene glycol (PEG) content were prepared by a complete liquid-phase method, and characterized by XRD, H2-TPR, N2-adsorption, and XPS. The influence of PEG content on the higher alcohols synthesis from syngas was investigated. The results showed that addition of PEG can influence the texture and surface properties of the catalysts, and therefore affect their activity and product distribution. With an increase in PEG content, BET surface area, Cu crystallite size and surface active ingredient content of the catalysts first increased and then decreased, the CO conversion had similar variation tendency. However, the pore volume and pore diameter of the catalyst increased, and the binding energy of the active component and the content of Cu2O decreased, which resulted in higher catalyst selectivity towards higher alcohols. The highest C2+OH selectivity in total alcohols was 60.6 wt %.  相似文献   

16.
Cu/活性炭催化剂:水合肼还原制备及催化甲醇氧化羰基化   总被引:1,自引:0,他引:1  
以活性炭为载体,水合肼为还原剂制备了负载型Cu/活性炭催化剂,考察了水合肼/硝酸铜物质的量的比对催化甲醇气相氧化羰基化性能的影响,并采用XRD、XPS、H2-TPR和SEM等手段对催化剂进行了表征。结果表明,不加入还原剂水合肼时,催化剂中仅有CuO;随着水合肼/硝酸铜物质的量的比的增加,二价铜逐步被还原为Cu2O和/或单质Cu0,未被还原的Cu(OH)2在催化剂干燥过程中分解形成分散态CuO存在于催化剂表面。当水合肼/硝酸铜物质的量的比为0.75时,催化剂的催化性能最好,碳酸二甲酯的时空收率为120.62 mg.(g.h)-1,选择性为74.51%,甲醇转化率达到3.88%。在93 h反应时间内,催化剂都保持了较高的反应活性和选择性。此时铜物种以Cu2O和分散态CuO为主,Cu2O是主要的活性物种。  相似文献   

17.
The structure and catalytic characteristics of a series of Pd–Cu/α-Al2O3 catalysts with Pd: Cu ratio varied from Pd1–Cu0.5 to Pd1–Cu4 were studied. The use of α-Al2O3 with a small surface area (Ssp = 8 m2/g) as a support made it possible to minimize the effect of diffusion on the catalytic characteristics and to study the structure of Pd–Cu nanoparticles by X-ray diffraction (XRD) analysis. The XRD analysis and transmission electron microscopy (TEM) data indicated the formation of uniform bimetallic Pd–Cu nanoparticles (d = 20–60 nm), whose composition corresponded to a ratio between the metals in the catalyst, and also the absence of monometallic Pd0 and Cu0 nanoparticles. The study of catalytic properties in the liquid-phase hydrogenation of diphenylacetylene (DPA) showed that the activity of the catalysts rapidly decreased with the Cu content increase; however, in this case, the yield of a desired alkene compound significantly increased. The selectivity of alkene formation on the catalysts with the ratios Pd: Cu = 1: 3 and 1: 4 was superior to the commercial Lindlar catalyst.  相似文献   

18.
The reduced and reoxidized Cu-Zn-Si oxide catalysts as layered copper-zinc hydroxo silicates with the zincsilite structure were studied using in situ and ex situ X-ray diffraction analysis, transmission electron microscopy, and the temperature dependence of magnetic susceptibility. The catalysts were prepared by homogeneous deposition-precipitation. It was found that Cu0 particles were formed on the surface of a layered hydrosilicate with the zincsilite structure upon reduction with hydrogen. The reoxidation of the reduced samples with a mixture of oxygen and an inert gas, which contained no more than 0.05 vol % O2, resulted in the formation of individual Cu2O and CuO phases; copper ions did not return to the hydrosilicate structure. Catalytic tests of Cu-Zn-Si catalysts in methanol synthesis indicate that the specific catalytic activity of copper metal particles grows linearly with increasing zinc loading. This fact suggests that copper metal particles, which were obtained by the reduction of Cu2+ ions from the copper-zinc hydroxo silicate with the zincsilite structure, were responsible for activity in methanol synthesis. Consequently, the ability to return copper ions to a precursor compound in reoxidation with oxygen at low concentrations, which is known for reduced Cu/ZnO catalysts (these catalysts are highly active in methanol synthesis), is not related to the catalytic activity in methanol synthesis.  相似文献   

19.
Reduced graphene oxide (RGO)‐supported Cu–Cu2O nanocomposite material (Cu‐Cu2O@RGO) was prepared through a one‐pot reflux synthesis method. The morphology, crystal structure and composition of the prepared Cu‐Cu2O@RGO were characterized using transmission electron microscopy, X‐ray diffraction, and X‐ray photoelectron, infrared and Raman spectroscopies. Cu‐Cu2O@RGO as a heterogeneous catalyst was applied to tandem reactions of halides and sodium azide with terminal alkynes to synthesize effectively 1,4‐disubstituted 1,2,3‐triazoles. Moreover, the catalyst showed excellent recyclability performance with very little leaching of the metal. Compared with homogeneous catalysts, Cu‐Cu2O@RGO as a green and efficient catalyst was recoverable, easy to separate and highly stable in the tandem method for the synthesis of 1,2,3‐triazole compounds.  相似文献   

20.
为了解决燃料电池阴极催化剂价格昂贵、稳定性差等问题,使用α-亚硝基-β-萘酚铜、三聚氰胺和导电碳黑通过简单的热处理制备Cu、N共掺杂的碳基催化剂(Cu-N-KB)。表征结果证实Cu、N均匀分布在碳载体中,其中铜以晶态铜粒子和非晶态的Cu-Nx两种方式存在,该催化剂高的比表面积与介孔结构确保了其大量的活性位点和快速的传质效率。该催化剂在碱性介质中表现出比商业Pt/C催化剂优异的氧还原催化性、抗甲醇性和稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号