首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acrylic polymers, including poly(methyl methacrylate), poly(2,2,2-trifluoroethyl methacrylate), poly( N,N'-dimethyaminoethyl methacrylate), and poly(2-hydroxyethyl methacrylate) were grafted from flat nickel and copper surfaces through surface-initiated atom transfer radical polymerization (ATRP). For the nickel system, there was a linear relationship between polymer layer thickness and monomer conversion or molecular weight of "free" polymers. The thickness of the polymer brush films was greater than 80 nm after 6 h of reaction time. The grafting density was estimated to be 0.40 chains/nm2. The "living" chain ends of grafted polymers were still active and initiated the growth of a second block of polymer. Block copolymer brushes with different block sequences were successfully prepared. The experimental surface chemical compositions as measured by X-ray photoelectron spectroscopy agreed very well with their theoretical values. Water contact angle measurements further confirmed the successful grafting of polymers from nickel and copper surfaces. The surface morphologies of all samples were studied by atomic force microscopy. This study provided a novel approach to prepare stable functional polymer coatings on reactive metal surfaces.  相似文献   

2.
Model protein bovine serum albumin (BSA) was covalently grafted onto poly[(L-lactide)-co-carbonate] microsphere surfaces by "click chemistry." The grafting was confirmed by confocal laser scanning microscopy and X-ray photoelectron spectroscopy. The maximum amount of surface-grafted BSA was 45 mg x g(-1). The secondary structure of the grafted BSA was analyzed by FTIR and the results demonstrated that the grafting did not affect protein structure. This strategy can also be used on microspheres prepared from poly(L-lactide)/poly[(L-lactide)-co-carbonate] blend materials.  相似文献   

3.
A series of polymer-coated Au nanoparticles have been prepared using the "grafting-to" approach. Thiol-terminated polystyrene and poly(ethylene oxide) ligands are found to form dense brushes on the faceted gold nanoparticle surfaces. Depending on the polymer, the ligand grafting densities on the gold nanoparticles are 1.2- to 23.5-fold greater than those available via self-assembled monolayer formation of the corresponding two-dimensional gold surfaces.  相似文献   

4.
Grafting of poly(methyl vinyl ketone) onto aluminum surface   总被引:1,自引:0,他引:1  
Polymers were grafted on aluminum surfaces in order to modify the chemical and physical properties of the interface. The properly cleaned and activated surface of the aluminum substrate was first "silanized" either with 3-(trimethoxysilyl)propylamine or allyltrimethoxysilane. The grafting was carried out following two methods: (i) by the reaction of preformed poly(methyl vinyl ketone) with the aminosilane-modified surface; and (ii) by polymerization of methyl vinyl ketone with the vinylsilane-modified surface. The modified aluminum surfaces were characterized by X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The new surfaces were examined by contact-angle measurements, and determinations of the Lewis basicity.  相似文献   

5.
Carbohydrates (saccharides) are ubiquitous on the extracellular surface of living cells and mediate a myriad of biological recognition and signaling processes. Carbohydrate decoration of polymer surfaces with covalent attachment of saccharides offers a new realm of opportunities to mimic cellular events such as protein recognition and binding. We describe the carbohydrate decoration (surface glycosylation) of poly(2-hydroxyethyl methacrylate)-grafted microporous polypropylene membranes (poly(HEMA)-g-MPPMs) with mono- and disaccharides. Galactose, lactose, glucose, and maltose were covalently attached on the surfaces of poly(HEMA)-g-MPPMs and were compared in detail. The process was verified by solid state (13)C NMR spectra. Membranes with high binding degree (BD) of saccharide ligands on the surfaces were facilely prepared from poly(HEMA)-g-MPPMs with high grafting degree (GD) of poly(HEMA). For poly(HEMA)-g-MPPM with the same GD of poly(HEMA), the BD of disaccharides is lower than that of monosaccharides and the disaccharide-decorated MPPMs are more hydrophilic than the monosaccharide-decorated ones. The carbohydrate-decorated MPPMs prepared from galactose, lactose, glucose, and maltose (denoted as MPPM-Gal, MPPM-Lac, MPPM-Glc and MPPM-Mal, respectively) recognize and adsorb specifically one of the two lectins, concanavalin A (Con A) and peanut agglutinin (PNA). As the BD of saccharide increases, the "glycoside cluster effect" plays a primary role in lectin adsorption. MPPM-Lac has enhanced affinity to PNA as compared with MPPM-Gal having similar BD of saccharide., on the other hand, MPPM-Mal shows no enhanced affinity to Con A in comparison with MPPM-Glc as the BD of saccharide is above 0.9 μmol/cm(2), where the "glycoside cluster effect" occurs.  相似文献   

6.
Antimicrobial surfaces were prepared using the "grafting onto" technique. Well-defined block copolymers containing poly(2-(dimethylamino)ethyl methacrylate) and poly(3-(trimethoxysilyl)propyl methacrylate) segments (PDMAEMA/PTMSPMA) and corresponding random copolymers were prepared via atom transfer radical polymerization (ATRP), followed by covalent attachment to a glass surface through reaction of the trimethoxysilyl groups with surface silanol groups. The density of quaternary ammonium (QA) groups available to bind small molecules in solution increased with polymer solution concentration and immobilization time. For the PDMAEMA 97- b-PTMSPMA xdiblock copolymers with a fixed length of PDMAEMA segment (degree of polymerization (DP) = 97) and varied lengths of PTMSPMA segments, maximal available surface charge was observed when the ratio of DP PDMAEMA to DP PTMSPMA was 5:1. The tertiary amino groups in immobilized PDMAEMA segments were reacted with ethyl bromide to form QA groups. Alternatively, block copolymers with prequaternized PDMAEMA segments were attached to surfaces. Biocidal activity of the surfaces with grafted polymers versus Escherichia coli ( E. coli) increased with the density of available QA units on the surface. The number of bacteria killed by the surface increased from 0.06 x 10(5) units/cm2 to 0.6 x 10(5) units/cm2, when the density of surface QA increased from 1.0 x 10(14) unit/cm2 to 6.0 x 10(14) unit/cm2. The killing efficiency of QA on all surfaces was similar with approximately 1 x 10(10) units of QA needed to kill one bacterium. The AFM analysis indicated that grafting onto the surface resulted in small patches of highly concentrated polymer. These patches appear to increase the killing efficiency as compared to surfaces prepared by grafting onto with the same average polymer density but with a uniform distribution.  相似文献   

7.
Polymer surface layers comprised of mixed chains grafted to a functionalized silicon surface with a total layer thickness of only 1-3 nm are shown to exhibit reversible switching of their structure. Carboxylic acid-terminated polystyrene (PS) and poly (butyl acrylate) (PBA) were chemically attached to a silicon surface that was modified with an epoxysilane self-assembled monolayer by a "grafting to" routine. While one-step grafting resulted in large, submicron microstructures, a refined, two-step sequential grafting procedure allowed for extremely small spatial dimensions of PS and PBA domains. By adjusting the grafting parameters, such as concentration of each phase and molecular weight, very finely structured surfaces resulted with roughly 10-nm phase domains and less than 0.5-nm roughness. Combining the glassy PS and the rubbery PBA, we implemented a design approach to fabricate a mixed brush from two immiscible polymers so that switching of the surface nanomechanical properties is possible. Post-grafting hydrolysis converted PBA to poly(acrylic acid) to amplify this switching in surface wettability. Preliminary tribological studies showed a difference in wear behavior of glassy and rubbery surface layers. Such switchable coatings have practical applications as surface modifications of complex nanoscale electronic devices and sensors, which is why we restricted total thickness for potential nanoscale gaps.  相似文献   

8.
In this study, click chemistry was proposed as a tool for tuning the surface hydrophilicity of monodisperse-macroporous particles in micron-size range. The monodisperse-porous particles carrying hydrophobic or hydrophilic molecular brushes on their surfaces were obtained by the proposed modification. Hydrophilic poly(glycidyl methacrylate-co-ethylene dimethacrylate), poly(GMA-co-EDM) particles were hydrophobized by the covalent attachment of poly(octadecyl acrylate-co-propargyl acrylate), poly(ODA-co-PA) copolymer onto the particle surface via triazole formation by click chemistry. In the second part, Hydrophobic poly(4-chloromethylstyrene-co-divinylbenzene), poly(CMS-co-DVB) particles were hydrophilized by the covalent attachment of poly(vinyl alcohol), PVA onto their surface also via triazole formation by click chemistry. The presence of PVA and poly(ODA-co-PA) copolymer on the corresponding particles was shown by FTIR-DRS. After click-coupling reactions applied for both hydrophobic poly(CMS-co-DVB) and hydrophilic poly(GMA-co-EDM) particles, the marked changes in surface polarity were shown by contact angle measurements. Protein adsorption characteristics of plain and modified particles were investigated for both materials. In the isoelectric point of albumin, the non-specific albumin adsorption decreased from 225 to 80 mg/g by grafting PVA onto the poly(CMS-co-DVB) beads. On the other hand, the non-specific albumin adsorption onto the plain poly(GMA-co-EDM) beads increased from 50 to 400 mg/g by the covalent attachment of poly(ODA-co-PA) copolymer onto the bead-surface via click chemistry. The protein adsorption behavior was efficiently regulated by the covalent attachment of appropriate molecular brushes onto the surfaces of selected particles. The results indicated that "click chemistry" was an efficient tool for controlling the polarity of monodisperse-macroporous particles.  相似文献   

9.
Thin polymer films that prevent the adhesion of bacteria are of interest as coatings for the development of infection‐resistant biomaterials. This study investigates the influence of grafting density and film thickness on the adhesion of Staphylococcus epidermidis to poly(poly(ethylene glycol)methacrylate) (PPEGMA) and poly(2‐hydroxyethyl methacrylate) (PHEMA) brushes prepared via surface‐initiated atom transfer radical polymerization (SI‐ATRP). These brushes are compared with poly(ethylene glycol) (PEG) brushes, which are obtained by grafting PEG onto an epoxide‐modified substrate. Except for very low grafting densities (ρ = 1%), crystal violet staining experiments show that the PHEMA and PPEGMA brushes are equally effective as the PEG‐modified surfaces in preventing S. epidermis adhesion and do not reveal any significant variations as a function of film thickness or grafting density. These results indicate that brushes generated by SI‐ATRP are an attractive alternative to grafted‐onto PEG films for the preparation of surface coatings that resist bacterial adhesion.

  相似文献   


10.
Surface-initiated grafting of N,N-dimethylacrylamide, styrenesulfonate (SS), and (ar-vinylbenzyl)trimethylammonium chloride (VBTAC) from microwave plasma carboxylated, initiator-functionalized poly(dimethylsiloxane) (PDMS) surfaces was accomplished utilizing reversible addition-fragmentation chain transfer (RAFT) polymerization. Surface spectroscopic attenuated total reflectance (ATR) FT-IR analysis and atomic force microscopy (AFM) measurements were utilized to determine surface grafting and morphological surface features. The VBTAC-grafted PDMS provided a smooth, hydrophilic cationic surface for creating layer-by-layer (LBL) surfaces via alternating deposition of well-defined poly(SS) and poly(VBTAC), also prepared via aqueous RAFT. Comparisons of the ATR FT-IR spectra of the LBL assemblies and those of respective anionic poly(SS) and cationic poly(VBTAC) components confirmed strong electrostatic complexation of a fraction of the sulfonate and quarternary ammonium species in the layers as well as the existence of noncomplexed species. AFM images of surface topology indicated the presence of domains, likely phase-separated segments of the respective homopolymers, as well as interlayer mixing. The employed LBL methodology results in formation of stable, highly hydrophilic surfaces on a PDMS substrate. To our knowledge, this is the first study that illustrates surface functionalization of PDMS using microwave plasma and RAFT polymerization, followed by LBL deposition of polyelectrolytes.  相似文献   

11.
A reversible addition–fragmentation chain transfer (RAFT) polymerization technique was applied to graft polymerize brushes of poly(methyl methacrylate) (PMMA) and poly(poly(ethylene glycol) monomethacrylate) (PPEGMA) from poly(vinylidene fluoride) (PVDF) surfaces. PVDF surfaces were exposed to aqueous LiOH, followed by successive reductions with NaBH4 and DIBAL‐H to obtain hydroxyl functionality. Azo‐functionalities, as surface initiators for grafting, were immobilized on the PVDF surfaces by esterification of 4,4′‐azobis(4‐cyanopentanoic acid) and the surface hydroxyl groups. The chemical composition and surface topography of the graft‐functionalized PVDF surfaces were characterized by X‐ray photoelectron spectroscopy, attenuated total reflectance‐FTIR spectroscopy, and atomic force microscopy. Kinetics studies revealed a linear increase in the graft concentration of PMMA and PPEGMA with the reaction time, indicating that the chain growth from the surface was consistent with a “controlled” or “living” process. The living chain ends were used as the macroinitiator for the synthesis of diblock copolymer brushes. Water contact angles on PVDF films were reduced by surface grafting of PEGMA and MMA. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3071–3082, 2006  相似文献   

12.
The in situ ATRP (atom transfer radical polymerization) "grafting from" approach was successfully applied to graft poly(methyl methacrylate) (PMMA) onto the convex surfaces of multiwalled carbon nanotubes (MWNT). The thickness of the coated polymer layers can be conveniently controlled by the feed ratio of MMA to preliminarily functionalized MWNT (MWNT-Br). The resulting MWNT-based polymer brushes were characterized and confirmed with FTIR, 1H NMR, SEM, TEM, and TGA. Moreover, the approach has been extended to the copolymerization system, affording novel hybrid core-shell nanoobjects with MWNT as the core and amphiphilic poly(methyl methacrylate)-block-poly(hydroxyethyl methacrylate) (PMMA-b-PHEMA) as the shell. The approach presented here may open an avenue for exploring and preparing novel carbon nanotubes-based nanomaterials and molecular devices with tailor-made structure, architecture, and properties.  相似文献   

13.
In the last decade, substantial research in the field of post‐plasma grafting surface modification has focussed on the introduction of carboxylic acids on surfaces by grafting acrylic acid (AAc). In the present work, we report on an alternative approach for biomaterial surface functionalisation. Thin poly‐ε‐caprolactone (PCL) films were subjected to a dielectric barrier discharge Ar‐plasma followed by the grafting of 2‐aminoethyl methacrylate (AEMA) under UV‐irradiation. X‐ray photoelectron spectroscopy (XPS) confirmed the presence of nitrogen. The ninhydrin assay demonstrated, both quantitatively and qualitatively, the presence of free amines on the surface. Confocal fluorescence microscopy (CFM), atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to visualise the grafted surfaces, indicating the presence of pAEMA. Static contact angle (SCA) measurements indicated a permanent increase in hydrophilicity. Furthermore, the AEMA grafted surfaces were applied for comparing the physisorption and covalent immobilisation of gelatin. CFM demonstrated that only the covalent immobilisation lead to a complete coverage of the surface. Those gelatin‐coated surfaces obtained were further coated using fibronectin. Osteosarcoma cells demonstrated better cell‐adhesion and cell‐viability on the modified surfaces, compared to the pure PCL films.

  相似文献   


14.
通过紫外辐射接枝在聚乳酸膜表面引入聚丙烯酸的方法使聚乳酸材料表面的亲水性和细胞相容性得到改善,研究了各种处理条件对材料表面的羧基密度、表面形态和表面接触角的影响,同时还考察了紫外辐射接枝聚丙烯酸的聚乳酸表面的成骨细胞相容性.红外光谱分析和羧基密度测定结果表明:通过紫外光引发接枝,聚丙烯酸被成功接枝到聚乳酸表面,而且接枝密度受接枝时间和聚丙烯酸质量分数的影响很大.接触角和原子力显微镜研究结果表明:接枝聚丙烯酸后的聚乳酸表面的亲水性和粗糙度明显增加,能够促进成骨细胞的生长.  相似文献   

15.
Surface-tethered bottlebrushes have been prepared by ATRP grafting of the macroinitiator brush backbone onto plasmachemical-deposited poly(vinylbenzyl chloride) initiator nanofilms followed by ATRP growth of the side chains (bristles). The surface density of bottlebrushes can be precisely tailored by varying the plasmachemical deposition parameters employed for producing the poly(vinylbenzyl chloride) initiator nanolayers. Lateral force scanning probe microscopy has shown that poly(glycidyl methacrylate)-graft-poly(sodium styrene sulfonate) bottlebrush-decorated surfaces give rise to an enhancement in lubrication.  相似文献   

16.
PEGylated Nb2O5 surfaces were obtained by the adsorption of poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) copolymers, allowing control of the PEG surface density, as well as the surface charge. PEG (MW 2 kDa) surface densities between 0 and 0.5 nm(-2) were obtained by changing the PEG to lysine-mer ratio in the PLL-g-PEG polymer, resulting in net positive, negative and neutral surfaces. Colloid probe atomic force microscopy (AFM) was used to characterize the interfacial forces associated with the different surfaces. The AFM force analysis revealed interplay between electrical double layer and steric interactions, thus providing information on the surface charge and on the PEG layer thickness as a function of copolymer architecture. Adsorption of the model proteins lysozyme, alpha-lactalbumin, and myoglobin onto the various PEGylated surfaces was performed to investigate the effect of protein charge. In addition, adsorption experiments were performed over a range of ionic strengths, to study the role of electrostatic forces between surface charges and proteins acting through the PEG layer. The adsorbed mass of protein, measured by optical waveguide lightmode spectroscopy (OWLS), was shown to depend on a combination of surface charge, protein charge, PEG thickness, and grafting density. At high grafting density and high ionic strength, the steric barrier properties of PEG determine the net interfacial force. At low ionic strength, however, the electrical double layer thickness exceeds the thickness of the PEG layer, and surface charges "shining through" the PEG layer contribute to protein interactions with PLL-g-PEG coated surfaces. The combination of AFM surface force measurements and protein adsorption experiments provides insights into the interfacial forces associated with various PEGylated surfaces and the mechanisms of protein resistance.  相似文献   

17.
The surface grafting of multi-polymeric materials can be achieved by grafting as components such as polymers poly(N-isopropylacrylamide) and/or surfactant molecules (hexatrimethylammonium bromide, polyoxyethylene sorbitan monolaurate). The chosen grafting techniques, i.e. plasma activation followed by coating, allow a large spectrum of functional groups that can be inserted on the surface controlling the surface properties like adhesion, wettability and biocompatibility. The grafted polypropylene surfaces were characterized by contact angle analyses, XPS and AFM analyses. The influence of He plasma activation, of the coating parameters such as concentrations of the various reactive agents are discussed in terms of hydrophilic character, chemical composition and morphologic surface heterogeneity. The plasma pre-activation was shown inevitable for a permanent polymeric grafting. PNIPAM was grafted alone or with a mixture of the surfactant molecules. Depending on the individual proportion of each component, the grafted surfaces are shown homogeneous or composed of small domains of one component leading to a nano-structuration of the grafted surface.  相似文献   

18.
Vascular endothelial growth factor type protein (VEGF), a potent angiogenic effector molecule, was successfully covalently immobilized onto the surfaces of the resorbable polymers poly(L‐lactic acid) (PLLA) and poly(ε‐caprolactone) (PCL) through a three‐step strategy. The surfaces were first covalently grafted with poly(acrylic acid) using non‐destructive and solvent free vapor‐phase grafting. A diamine spacer was coupled to the carboxylic acid pendant groups on the graft chains using EDC/NHS chemistry and VEGF was finally covalently attached to the amine linkers. The chemistry and topography of the modified substrates were quantitatively and qualitatively verified with XPS, ATR‐FTIR, UV–VIS, SEM, and ELISA. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Molecular brushes (densely grafted polymers or bottle-brush macromolecules) were synthesized by the "grafting onto" method via combination of atom transfer radical polymerization (ATRP) and "click" reactions. Linear poly(2-hydroxyethyl methacrylate) (PHEMA) polymers were synthesized first by ATRP. After esterification reactions between pentynoic acid and the hydroxyl side groups, polymeric backbones with alkynyl side groups on essentially every monomer unit (PHEMA-alkyne) were obtained. Five kinds of azido-terminated polymeric side chains (SCs) with different chemical compositions and molecular weights were used, including poly(ethylene glycol)-N3 (PEO-N3), polystyrene-N3, poly(n-butyl acrylate)-N3, and poly(n-butyl acrylate)-b-polystyrene-N3. All click coupling reactions between alkyne-containing polymeric backbones (PHEMA-alkyne) and azido-terminated polymeric SCs were completed within 3 h. The grafting density of the obtained molecular brushes was affected by several factors, including the molecular weights and the chemical structures of the linear SCs, as well as the initial molar ratio of linear chains to alkynyl groups. When linear polymers with "thinner" structure and lower molecular weight, e.g., PEO-N3 with Mn = 775 g/mol, were reacted with PHEMA-alkyne (degree of polymerization = 210) at a high molar ratio of linear chains to alkynyl groups in the backbone, the brush copolymers with the highest grafting density were obtained (Y(grafting) = 88%). This result indicates that the average number of SCs was ca. 186 per brush molecule and the average molecular weight of the brush molecules was ca. 190 kg/mol.  相似文献   

20.
Choose sides: differential polymer adhesion   总被引:1,自引:0,他引:1  
AFM-based single molecule desorption measurements were performed on surface end-grafted poly(acrylic acid) monolayers as a function of the pH of the aqueous buffer to study the adhesion properties of polymers that bridge two surfaces. These properties were found to depend on the adhesion forces of both surfaces in a differential manner, which is explained with a simple model in analogy to the Bell-Evans formalism used in dynamic force spectroscopy. The measured interaction forces between the poly(acrylic acid) chains and silicon nitride AFM tips depend on the grafting density of the polymer monolayers as well as on the contour length of the polymer chains. This study demonstrates that the stability of polymer bridges is determined by the adhesion strengths on both surfaces, which can be tuned by using pH-dependent polyelectrolyte monolayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号