首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inductively coupled plasma mass spectrometry (ICP-MS) and electrospray ionization mass spectrometry (ESI-MS) were used as complementary techniques to provide element and molecular information for aminocarboxylic lead species including [Pb(NTA)]1−, [Pb(HEDTA)]1−, [Pb(EDTA)]2− and [Pb(DTPA)]3−. ESI-MS was used to initially confirm the formation of lead aminocarboxylic complexes in solution and subsequently anion-change chromatography coupled with ICP-MS was used to speciate these complexes using a mobile phase containing 30 mM NH4H2PO4 at pH of 8.0. However, [Pb(NTA)]1− was not observed during chromatographic separation due to its poor stability. The species [Pb(HEDTA)]1−, [Pb(EDTA)]2− and [Pb(DTPA)]3− were separated within 15 min with reasonable resolution and detection limits ranging from 0.05 to 0.2 μg L−1 with simple direct injection of sample. The proposed method was used to speciate aminocarboxylic lead complexes in soil solution.  相似文献   

2.
Quantitative determination of trace glyphosate and phosphate in waters was achieved by coupling ion chromatography (IC) separation with inductively coupled plasma mass spectrometry (ICP-MS) detection. The separation of glyphosate and phosphate on a polymer anion-exchange column (Dionex IonPac AS16, 4.0 mm x 250 mm) was obtained by eluting them with 20 mM citric acid at 0.50 mL min(-1), and the analytes were detected directly and selectively by ICP-MS at m/z = 31. Parameters affecting their chromatographic behaviors and ICP-MS characteristics were systematically examined. Based on a 500-microL sample injection volume, the detection limits were 0.7 microgL(-1) for both glyphosate and phosphate, and the calibrations were linear up to 400 microgL(-1). Polyphosphates, aminomethylphosphonic acid (the major metabolite of glyphosate), non-polar and other polar phosphorus-containing pesticides showed different chromatographic behaviors from the analytes of interest and therefore did not interference. The determination was also interference free from the matrix anions (nitrate, nitrite, sulphate, chloride, etc.) and metallic ions. The analysis of certified reference material, drinking water, reservoir water and Newater yielded satisfactory results with spiked recoveries of 97.1-107.0% and relative standard deviations of < or = 7.4% (n = 3). Compared to other reported methods for glyphosate and phosphate, the developed IC-ICP-MS method is sensitive and simple, and does not require any chemical derivatization, sample preconcentration and mobile phase conductivity suppression.  相似文献   

3.
Stable complexes are required during the ion chromatographic (IC) separation of Fe‐polycarboxylic acid complexes. Electrospray ionization mass spectrometry (ESI‐MS) was used to identify 1:1 stoichiometric complexes of Fe[HEDTA], Fe[EDTA]1? and Fe[DTPA]2?, and the spectra showed that these Fe complexes were stable in solution. Furthermore, inductively coupled plasma mass spectrometry (ICP‐MS) using an octopole reaction system (ORS) reduced polyatomic ion 40Ar16O+ interference in the detection of 56Fe via the addition of either H2 or He to the ORS, with He at a flow rate 3.5 mL min?1 being the optimum collision gas. Finally, IC/ICP‐MS was used for the separation and detection of Fe complexes with an eluent containing 30 mM (NH4)2HPO4 at pH 8.0, but only Fe[HEDTA], Fe[EDTA]1? and Fe[DTPA]2? were observed within 10 min with reasonable resolution. Detection limits in the range of 10–13 µg L?1 were achieved using He as the collision gas. The proposed method was used for the determination of Fe species in soil solutions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The use of capillary electrophoresis (CE) and UV detection for the determination of metal speciation is based on the standards via matching migration time. Consequently, it requires that the metal species are stable during electrophoresis. Migration time of the metal species is dependent on the electrolyte composition. However, the stability for such metal complexes is also dependent on electrolyte composition and electrolyte-specific stability is not always well known. In this paper, the stability of iron (Fe) polycarboxylate complex formation was determined using electrospray ionization mass spectrometry (ESI-MS). Mass spectra indicates that Fe[DTPA]2−, Fe[EDTA], Fe[HEDTA] and Fe[NTA] were present in solution but the mass spectrum for Fe[NTA] was found to be weak. An electrolyte containing 25 mM NaH2PO4 and 0.25 mM tetradecyltrimethylammonium bromide (TTAB) at pH 6.0 was used to successfully separate Fe[DTPA]2−, Fe[EDTA]1− and Fe[HEDTA]. The instability of Fe[NTA] meant it was not observed due to its instability during electrophoresis. To improve UV detection limits sample stacking techniques, such as large volume sample stacking (LVSS) without polarity switching and filed-amplified sample injection (FASI), were investigated. The results show that less than 0.01 μM detection limits for the Fe complexes were obtained using FASI. The calibration plots were linear from 0.05-3.0 with good reproducibility (peak area: 6.5-8.1%) when a water plug was used. Finally, the proposed method was demonstrated for the determination of trace Fe complexes in river waters.  相似文献   

5.
An implementation of the Dionex IonPac AS12A analytical column with an element-specific ICP-MS detection is described for the simultaneous determination of halogen and oxyhalogen anions, sulfate, phosphate, selenite, selenate and arsenate. The chromatographic separation was achieved in less than 4 min with an aqueous 11 mM (NH4)2CO3 (pH 11.2, adjusted with aqueous ammonia) as eluent. Special emphasis was given to optimize the ICP-MS detection conditions for the reliable detection (RSD<5%) of bromate and bromide at a bromine concentration level of 1.0 microg l(-1) with 50 microl sample injection volume. In order to achieve the highest detector response for bromine species an ultrasonic nebulizer equipped with a membrane desolvator had to be employed. The detection limits (S/N=3, sample injection volume 50 microl) obtained with the IC-ICP-MS after the optimization were 0.67 microg l(-1) for BrO3-, 0.47 microg l(-1) for Br-, 69 microg l(-1) for ClO2-, 4 microg l(-1) for Cl-, 47 microg l(-1) for ClO3-, 13 microg l(-1) for SO4(2-), 36 microg l(-1) for PO4(3-), 0.4 microg l(-1) for SeO3(2-), 0.3 microg l(-1) for SeO4(2-), and 0.4 microg l(-1) for AsO4(3-).  相似文献   

6.
Kojic acid, 5-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one, has been used extensively as a clinical iron-chelating drug although the nature of the complexes of iron and kojic acid has not been established. In this article we demonstrate the complexation of kojic acid with iron(III) chloride by using electrospray ionization mass spectrometry (ESI-MS). The ESI-MS analysis revealed different reactions between iron(III) chloride and kojic acid (M), and the mass spectrum exhibited four complexes: [Fe+2(M-H)]+, [Fe+3(M-H)+H]+, [Fe2+4(M-H)+Cl]+, and [Fe2+5(M-H)]+. All these proposed complexes and the presence of chloride ion in one of the dinuclear complexes have been confirmed by isotopic patterns and fragmentation studies by means of tandem mass spectrometry (MSn).  相似文献   

7.
HPLC was coupled with sequential injection (SI) for simultaneous analyses of some heavy metals, including Co(II), Ni(II), Cu(II), and Fe(II). 2-(5-Nitro-2-pyridylazo)-5-[N-propyl-N-(3-sulfopropyl)amino]phenol (nitro-PAPS) was employed as a derivatizing reagent for sensitive spectrophotometric detection by online precolumn derivatization. The SI system offers an automated handling of sample and reagent, online precolumn derivatization, and propulsion of derivatives to the HPLC injection loop. The metal-nitro-PAPS complexes were separated on a C(18)-muBondapak column (3.9x300 mm(2)). Using the proposed SI-HPLC system, determination of four metal ions by means of nitro-PAPS complexes was achieved within 13 min in which the parallel of derivatization and separation were processed at the same time. Linear calibration graphs were obtained in the ranges of 0.005-0.250 mg/L for Cu(II), 0.007-1.000 mg/L for Co(II), 0.005-0.075 mg/L for Ni(II), and 0.005-0.100 mg/L for Fe(II). The system provides means for automation with good precision and minimizing error in solution handling with the RSD of less than 6%. The detection limits obtained were 2 microg/L for Cu(II) and Co(II), and 1 microg/L for Ni(II) and Fe(II). The method was successfully applied for the determination of metal ions in various samples, including milk powder for infant, mineral supplements, local wines, and drinking water.  相似文献   

8.
Suppressed conductimetric detection ion chromatography (IC) was investigated for the separation and detection of common inorganic anions, calcium and magnesium by anion-exchange chromatography using a sodium carbonate-EDTA mobile phase. The formation of anionic Ca2+ -EDTA and Mg2+ -EDTA complexes allowed its separation from other inorganic anions opening the way for their simultaneous determination in a single chromatographic run. The effect of the pH, carbonate and EDTA concentrations in the eluent and the previous addition of EDTA to the samples has been studied. The optimised experimental conditions were applied to the determination of Ca2+ and Mg2+ in mineral waters with results in agreement with alternative ICP-MS methodologies.  相似文献   

9.
A comparison of two methods for the identification and determination of peanut allergens based on europium (Eu)-tagged inductively coupled plasma mass spectrometry (ICP-MS) immunoassay and on liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) with a triple quadrupole mass analyzer was carried out on a complex food matrix like a chocolate rice crispy-based snack. The LC/MS/MS method was based on the determination of four different peptide biomarkers selective for the Ara h2 and Ara h3/4 peanut proteins. The performance of this method was compared with that of a non-competitive sandwich enzyme-linked immunosorbent assay (ELISA) method with ICP-MS detection of the metal used to tag the antibody for the quantitative peanut protein analysis in food. The limit of detection (LOD) and quantitation of the ICP-MS immunoassay were 2.2 and 5 microg peanuts g(-1) matrix, respectively, the recovery ranged from 86 +/- 18% to 110 +/- 4% and linearity was proved in the 5-50 microg g(-1) range. The LC/MS/MS method allowed us to obtain LODs of 1 and 5 microg protein g(-1) matrix for Ara h3/4 and Ara h2, respectively, thus obtaining significantly higher values with respect to the ELISA ICP-MS method, taking into account the different expression for concentrations. Linearity was established in the 10-200 microg g(-1) range of peanut proteins in the food matrix investigated and good precision (RSD <10%) was demonstrated. Both the two approaches, used for screening or confirmative purposes, showed the power of mass spectrometry when used as a very selective detector in difficult matrices even if some limitations still exist, i.e. matrix suppression in the LC/ESI-MS/MS procedure and the change of the Ag/Ab binding with matrix in the ICP-MS method.  相似文献   

10.
A liquid chromatographic/tandem mass spectrometric method using pneumatically assisted electrospray ionisation (LC/ESI-MS/MS) was developed for determination of dibutyl phthalate (DBP), benzyl butyl phthalate (BBP), di-2-ethylhexyl phthalate (DEHP), di-'isononyl' phthalate (DINP) and di-'isodecyl' phthalate (DIDP) in milk and milk products including infant formulas. The phthalates were extracted by a mixture of tert-butyl methyl ether and hexane from liquid samples. DBP, BBP and DEHP were removed from fats by liquid/liquid extraction into acetonitrile while DINP and DIDP were cleaned up on deactivated silica. The phthalates were detected in positive ion mode after separation on a reversed-phase C5 analytical column. Two transition products were monitored for each compound. The detection limits related to the transition products of lowest abundance were in the range 5-9 microg/kg.  相似文献   

11.
Ion chromatography (IC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) was systematically investigated for determining the speciation of chromium in environmental samples. Firstly, the stability of complexes formed by Cr(III) with various aminopolycarboxylic acids was studied by electrospray ionization mass spectrometry (ESI-MS). The results showed that [Cr(EDTA)] was stable in solution. Secondly, various mobile phases were examined to separate Cl from chromium species by IC to avoid Cl interference. The separation of [Cr(EDTA)] and Cr(VI) was achieved on a new anion-exchange column (G3154A/102) using a mobile phase containing 20 mM NH4NO3 and 10 mM NH4H2PO4 at pH 7.0 without Cl interference. Detection limits for chromium species were below 0.2 μg/L with a direct injection of sample and without prior removal of interferences from the matrix. Finally, the proposed method was used for the determination of chromium species in contaminated waters.  相似文献   

12.
The application of electrospray ionization mass spectrometry (ESI-MS) for aluminum speciation in the positive and negative ion modes was discussed. Aluminum nitrate, perchlorate and sulfate solutions were measured by ESI-MS. In the positive ion mode, aluminum species containing anions (Al-L; L=NO3, ClO4 and SO4) were identified, while [Al(OH)2(H2O)n]+ (n=2-4) were the main species. The affinity of the anions with Al3+ estimated by ESI-MS was consistent with the hardness of the anions (hard and soft acids and bases principle) and the results from 27Al nuclear magnetic resonance studies. This indicates that the results observed from the positive ion mode preserved the chemical state of aluminum in the solution. In the negative ion mode, [Al(OH)4-nLn]- (n=0-2, L=NO3, ClO4) were the main species, which were considered to be converted from positive aluminum species, [Al(OH)(H2O)n]+ (n=2-4), by the successive addition of anions. Anions did not only attach to one aluminum ion but also bridged two aluminum ions. In Al2(SO4)3 solution, the behavior of SO4(2-) in the negative ion mode differed from that of NO3- and ClO4-. This may reflect the affinity of SO4(2-) with Al3+ in the solution or in the mass spectrometer or in both. Finally, detection mechanisms for the aluminum species in the solution are proposed for both the positive and negative ion modes. It is shown that ESI-MS can be used to observe the interaction between Al3+ and anions. We show the importance of the interpretation of the results by ESI-MS for obtaining new information of the metal species in the solution.  相似文献   

13.
This paper describes the first approach that simultaneously quantifies four polar, water-soluble organophosphorus herbicides, i.e., glyphosate, glufosinate, fosamine and ethephon, at nanogram levels in environmental waters. The target herbicides were separated completely by ion chromatography (IC) on a polymer anion-exchange column, Dionex IonPac AS16 (4.0 mm x 250 mm), with 30 mM citric acid flowing at 0.70 mL min(-1) as the eluent. On-line inductively coupled plasma mass spectrometry (ICP-MS) using a quadrupole mass spectrometer was employed as a sensitive and selective detector of the effluents. Various parameters affecting the separation and detection were systematically examined and optimized. Detection limits of the herbicides achieved with the proposed IC/ICP-MS method were 1.1-1.4 microg L(-1) (as compound) based on a 500-microL sample injection. Matrix anions, metal ions, phosphate, polyphosphates, non-polar and other polar organophosphorus pesticides showed no interference. The developed method was validated using reservoir water, treated water and NEWater samples spiked at the level of 10-25 microg L(-1) with satisfactory recoveries (95-109%). It is applicable to the simultaneous determination of microg L(-1) concentrations of the herbicides in polluted water.  相似文献   

14.
A selective, sensitive and rapid liquid chromatography-tandem mass spectrometry method has been developed for the determination of caudatin-2,6-dideoxy-3-O-methy-beta-d-cymaropyranoside (CDMC) in rat plasma. This method involves a plasma clean-up step using liquid-liquid extraction, followed by LC separation and positive electrospray ionization mass spectrometry detection (LC/ESI-MS/MS). Chromatographic separation of the analytes was achieved using a C(18) column with a mobile phase of acetonitrile and water (70:30, v/v) at a flow rate of 1.0 mL/min. Low energy collision tandem mass spectrometric analysis (CID-MS/MS) using the multiple reaction monitoring (MRM) mode was used for analyte quantification. For the MRM analysis of CDMC, the following transition at m/z 658.4 --> 529.6 derived from the protonated molecule [M + Na](+). A calibration curve was linear in the 5-500 ng/mL range for CDMC, and the limit of detection was 5 ng/mL. The inter- and intra-day precisions (RSD) were 相似文献   

15.
The quantitative determination of nucleotides from DNA modified by styrene oxide is described using a combination of inductively coupled plasma high-resolution mass spectrometry (ICP-HRMS) and electrospray ionization mass spectrometry (ESI-MS), both interfaced to reversed-phase high-performance liquid chromatography (HPLC). LC/ICP-MS (resolution > 1500 to discriminate against 15N16O+ and 14N16OH+) was employed to determine quantitatively the content of modified nucleotides in standard solutions based on the signal of phosphorus; phosphoric acid served as an internal standard. By means of the standard addition technique the sensitivity of the LC/ESI-MS approach was subsequently determined. Since a comparison of UV, ICP and ESI-MS data suggested that in ESI-MS the ionization efficiency of the adducts is identical within the error limits, quantitative determination of all adducts is possible. For LC/ESI-MS with single ion monitoring, the detection limit for styrene oxide adducts of nucleotides was determined to be 20 pg absolute or 14 modified in 10(8) unmodified nucleotides in a 5 micrograms DNA sample, which comes close to the best methods available for the detection of chemical modifications in DNA.  相似文献   

16.
The applicability of benzofurazan derivatization regents to carboxylic acids analysis in LC/ESI-MS/MS (high-performance liquid chromatography/electrospray ionization tandem mass spectrometry) was examined. The product ion spectra of DAABD-AE {4-[2-(N,N-dimethylamino)ethylaminosulfonyl]-7-(2-aminoethylamino)-2,1,3-benzoxadiazole}, DAABD-PZ {4-[2-(N,N-dimethylamino)ethylaminosulfonyl]-7-N-piperazino-2,1,3-benzoxadiazole}, DAABD-PiCZ {4-[4-carbazoylpiperidin-1-yl]-7-[2-(N,N-dimethylamino)ethylaminosulfonyl]-2,1,3-benzoxadiazole}, DAABD-ProCZ {4-[2-carbazoylpyrrolidin-1-yl]-7-[2-(N,N-dimethylamino) ethylaminosulfonyl]-2,1,3-benzoxadiazole} and DAABD-Apy {4-[2-(N,N-dimethylamino)ethylaminosulfonyl]-7-(3-aminopyrrolidin-1-yl)-2,1,3-benzoxadiazole}, and their acetylated compounds were obtained. An intense fragment ion at m/z 151 corresponding to (dimethylamino)ethylaminosulfonyl moiety was observed in each spectra, suggesting that these reagents were suitable for ESI-MS/MS analysis. DAABD-AE, DAABD-APy and DAABD-PZ were applied to the analysis of octanoic acid and it was found that DAABD-AE and DAABD-APy gave high signal intensity suitable for LC/ESI-MS/MS.  相似文献   

17.
Mass spectrometric methods for the trace analysis of inorganic materials with their ability to provide a very sensitive multielemental analysis have been established for the determination of trace and ultratrace elements in high-purity materials (metals, semiconductors and insulators), in different technical samples (e.g. alloys, pure chemicals, ceramics, thin films, ion-implanted semiconductors), in environmental samples (waters, soils, biological and medical materials) and geological samples. Whereas such techniques as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spectrometry (ICP-MS) have multielemental capability, other methods such as thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS) have been used for sensitive mono- or oligoelemental ultratrace analysis (and precise determination of isotopic ratios) in solid samples. The limits of detection for chemical elements using these mass spectrometric techniques are in the low ng g−1 concentration range. The quantification of the analytical results of mass spectrometric methods is sometimes difficult due to a lack of matrix-fitted multielement standard reference materials (SRMs) for many solid samples. Therefore, owing to the simple quantification procedure of the aqueous solution, inductively coupled plasma mass spectrometry (ICP-MS) is being increasingly used for the characterization of solid samples after sample dissolution. ICP-MS is often combined with special sample introduction equipment (e.g. flow injection, hydride generation, high performance liquid chromatography (HPLC) or electrothermal vaporization) or an off-line matrix separation and enrichment of trace impurities (especially for characterization of high-purity materials and environmental samples) is used in order to improve the detection limits of trace elements. Furthermore, the determination of chemical elements in the trace and ultratrace concentration range is often difficult and can be disturbed through mass interferences of analyte ions by molecular ions at the same nominal mass. By applying double-focusing sector field mass spectrometry at the required mass resolution—by the mass spectrometric separation of molecular ions from the analyte ions—it is often possible to overcome these interference problems. Commercial instrumental equipment, the capability (detection limits, accuracy, precision) and the analytical application fields of mass spectrometric methods for the determination of trace and ultratrace elements and for surface analysis are discussed.  相似文献   

18.
Anatoxin-a (AN) and homoanatoxin-a (HMAN) are potent neurotoxins produced by a number of cyanobacterial species. A new, sensitive liquid chromatography/multiple tandem mass spectrometry (LC/MS(n)) method has been developed for the determination of these neurotoxins. The LC system was coupled, via an electrospray ionisation (ESI) source, to an ion-trap mass spectrometer in positive ion mode. The [M+H](+) ions at m/z 166 (anatoxin-a) and m/z 180 (homoanatoxin-a) were used as the precursor ions for multiple MS experiments. MS(2)bond;MS(4) spectra displayed major fragment ions at m/z 149 (AN), 163 (HMAN), assigned to [Mbond;NH(3)+H](+); m/z 131 (AN), 145 (HMAN), assigned to [Mbond;NH(3)bond;H(2)O+H](+), and m/z 91 [C(7)H(7)](+). Although the chromatographic separation of these neurotoxins is problematic, reversed-phase LC, using a C(18) Luna column, proved successful. Calibration data for anatoxin-a using spiked water samples (10 mL) in LC/MS(n) modes were: LC/MS (25-1000 microg/L), r(2) = 0.998; LC/MS(2) (5-1000(microg/L), r(2) = 0.9993; LC/MS(3) (2.5-1000 microg/L), r(2) = 0.9997. Reproducibility data (% RSD, N = 3) for each LC/MS(n) mode ranged between 2.0 at 500 microg/L and 7.0 at 10 microg/L. The detection limit (S/N = 3) for AN was better than 0.03 ng (on-column) for LC/MS(3) which corresponded to 0.6 microg/L.  相似文献   

19.
The present paper describes the development and validation of a new reversed-phase liquid chromatography–electrospray ionization tandem mass spectrometric method (RP-HPLC–ESI-MS/MS) for simultaneous determination of pyridine, 2-picoline, 4-picoline and quinoline from mainstream cigarette smoke. Liquid–liquid extraction followed by solid-phase extraction was applied to extract the target analytes from cigarette smoke. Baseline chromatographic separation was achieved by utilizing a Zorbax SB-Aq (4.6 × 150 mm, 5 μm) column in gradient chromatographic conditions with acetonitrile and ammonium acetate buffer as mobile phases. Popular commercially available Indian brand filtered and non-filtered cigarettes were analyzed using the same method. The identification of each chemical was established by chromatographic retention times, analyte specific fragmentation patterns and relative peak area ratios of two product/precursor ion pairs. The limit of detection of this method ranged from 1.74 to 14.32 ng/cig using an injection volume of 20 μl. The reproducibility of this method is excellent and better standard deviations were obtained compared to literature reported values for these chemicals. RSD value is less than 9% for all analytes.  相似文献   

20.
Coupling of ion chromatography with electrospray mass spectrometry (IC-MS) is a simple, sensitive and quick method for the determination of polar organic traces in water samples without derivatization. Analysis of the chelating agents ethylenediamino tetraacetate (EDTA) and diethylenetriamino pentaacetate (DTPA) in aqueous samples was done by IC-MS on an anion exchange column after simple sample preparation steps. Quantification down to a concentration level of 1 microg L(-1) even in wastewater influents and effluents was achieved utilizing 13C marked internal standards and measuring the individual [M - H+]- and stable [M - 4H+ + Fe3+]- cluster ions. The method was validated against certified, but more time consuming routine methods. Applying this method a series of several European water samples were analyzed for EDTA and DTPA indicating their nature as polar persistent pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号