首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The study of individual cells with infrared (IR) microspectroscopy often requires living cells to be cultured directly onto a suitable substrate. The surface effect of the specific substrates on the cell growth—viability and associated biochemistry—as well as on the IR analysis—spectral interference and optical artifacts—is all too often ignored. Using the IR beamline, MIRIAM (Diamond Light Source, UK), we show the importance of the substrate used for IR absorption spectroscopy by analyzing two different cell lines cultured on a range of seven optical substrates in both transmission and reflection modes. First, cell viability measurements are made to determine the preferable substrates for normal cell growth. Successively, synchrotron radiation IR microspectroscopy is performed on the two cell lines to determine any genuine biochemically induced changes or optical effect in the spectra due to the different substrates. Multivariate analysis of spectral data is applied on each cell line to visualize the spectral changes. The results confirm the advantage of transmission measurements over reflection due to the absence of a strong optical standing wave artifact which amplifies the absorbance spectrum in the high wavenumber regions with respect to low wavenumbers in the mid-IR range. The transmission spectra reveal interference from a more subtle but significant optical artifact related to the reflection losses of the different substrate materials. This means that, for comparative studies of cell biochemistry by IR microspectroscopy, it is crucial that all samples are measured on the same substrate type.
Figure
Cell separation by PCA due to the refractive index of the substrate used, revealing transmission artifact.  相似文献   

3.
We have reengineered a red-emitting dicyanomethylenedihydrofuran push-pull fluorophore so that it is dark until photoactivated with a short burst of low-intensity violet light. Photoactivation of the dark fluorogen leads to conversion of an azide to an amine, which shifts the absorption to long wavelengths. After photoactivation, the fluorophore is bright and photostable enough to be imaged on the single-molecule level in living cells. This proof-of-principle demonstration provides a new class of bright photoactivatable fluorophores, as are needed for super-resolution imaging schemes that require active control of single molecule emission.  相似文献   

4.
We propose a novel method of cell positioning using electroosmotic flow (EOF) to analyze cell-cell interactions. The EOF chip has an open-to-air configuration, is equipped with four electrodes to induce multi-directional EOF, and allows access of tools for liquid handling and of physical probes for cell measurements. Evaluation of the flow within this chip indicated that it controlled hydrodynamic transport of cells, in terms of both speed and direction. We also evaluated cell viability after EOF application and determined appropriate conditions for cell positioning. Two cells were successively positioned in pocket-like microstructures, one in each micropocket, by controlling the EOF direction. As an experimental demonstration, we observed contact interactions between two individual cells through gap junction channels. The EOF chip should provide ways to elucidate various cell-cell interactions between heterotypic cells.  相似文献   

5.
A single DNA molecule detection method on DNA tetrahedron decorated substrates has been developed. DNA tetrahedra were introduced onto substrates for both preventing nonspecific adsorption and sensitive recognition of single DNA molecules.  相似文献   

6.
We study the dynamics of tethered chains of length N on adsorbing surfaces, considering the dilute case; for this we use the bond fluctuation model and scaling concepts. In particular, we focus on the mean-square displacement of single monomers and of the center of mass of the chains. The characteristic time tau of the fluctuations of a free chain in a good solvent grows as tau approximately N(a), where the coefficient a obeys a=2nu+1. We show that the same coefficient also holds at the critical point of adsorption. At intermediate time scales single monomers show subdiffusive behavior; this concurs with the behavior calculated from scaling arguments based on the dynamical exponent a. In the adsorbed state tau(perpendicular), the time scale for the relaxation in the direction perpendicular to the surface, becomes independent of N; tau(perpendicular) is then the relaxation time of an adsorption blob. In the direction parallel to the surface the motion is similar to that of a two-dimensional chain and is controlled by a time scale given by tau(parallel) approximately N(2nu(2)+1)L(-2Delta(nu/nu)), where nu(2) is the Flory exponent in two dimensions, nu is the Flory exponent in three dimensions, and Deltanu=nu(2)-nu. For the motion parallel to the surface we find dynamical scaling over a range of about four decades in time.  相似文献   

7.
Superresolution imaging techniques based on sequential imaging of sparse subsets of single molecules require fluorophores whose emission can be photoactivated or photoswitched. Because typical organic fluorophores can emit significantly more photons than average fluorescent proteins, organic fluorophores have a potential advantage in super-resolution imaging schemes, but targeting to specific cellular proteins must be provided. We report the design and application of HaloTag-based target-specific azido DCDHFs, a class of photoactivatable push-pull fluorogens which produce bright fluorescent labels suitable for single-molecule superresolution imaging in live bacterial and fixed mammalian cells.  相似文献   

8.
We report on the successful synthesis of silver sulfide (Ag(2)S) nanowires by a simple and mild gas-solid reaction approach. For the nanowire synthesis, a preoxidized silver substrate is exposed to an atmosphere of an O(2)/H(2)S mixture at room temperature or slightly above. The resulting Ag(2)S nanowires are phase pure with a monoclinic crystal structure and have diameters of a few tens of nanometers and lengths up to 100 mum. The influence of reaction conditions on the diameter, length, and morphology of the Ag(2)S nanowires has been studied by a number of structural and spectroscopic techniques. The nanowire growth mechanism on the Ag substrate has been discussed, which is likely characterized by continuous deposition at the tip. Additionally, we demonstrate thinning and cutting of individual Ag(2)S nanowires with electron beams and laser beams, which are potentially useful for nanowire manipulation and engineering.  相似文献   

9.
The first direct assignment of highly dynamic enantiofacial discrimination acting on a single heterocyclic substrate has been achieved by a combination of experimental and theoretical CD spectroscopy. The interaction of chirally modified hosts based on triphenylene ketals with appropriate prochiral guests can lead to the preferential formation of one diastereomeric host-guest complex. This reversible stereoselective binding transmits the chiral information from remote chiral groups in the host to the strongly absorbing triphenylene chromophore, which gives rise to self-induced CD. This effect was exploited for the determination of the enantiofacial recognition in various host-guest systems. Inversion of the steric demand either of the chiral substituents at the host or of the prochiral guest leads to almost complete inversion of the resulting CD spectra. For the assignment of the absolute stereochemistry of the complexes, a combined molecular dynamics/quantum-chemical approach was successfully employed. Despite the size and the highly dynamic character of the supramolecular systems, fundamental properties of the systems and details of the spectra were simulated accurately, providing access to fast and reliable assignment of the enantiofacial preference. The results are highly consistent with available X-ray data.  相似文献   

10.
11.
Fabrications of La2NiO4+δ thin film layers by liquid-injection metalorganic chemical vapor deposition were tried on different single crystals substrates: (001)Si, (001)MgO, (001)LaAlO3 and (001)SrTiO3. As results of structural characterizations, polycrystalline dendritic layers of La2NiO4+δ tetragonal (or orthorhombic) phase were observed on (001)Si substrates while layers of a perovskite-like cubic structure were observed on the other single crystal substrates. From a high-resolution TEM study of a layer deposited on (001)MgO, such a perovskite-like cubic structure exhibits many planar structural faults likely similar to planes of oxygen vacancies of the La2NiO4+δ orthorhombic structure. A thin intermediate epitaxial layer of NiO phase was also identified. Using a X-ray texture diffractometer, the layer structure on (001)MgO, (001)LaAlO3 and (001)SrTiO3 was confirmed to be of cubic structure with 〈100〉 axes parallel to those of the substrate. The T dependence of the resistivity of a layer deposited on (001)MgO substrate was found to be of a semi-conducting behavior.  相似文献   

12.
Parameters characterizing the active surface of catalytic palladium layers formed from mixed glycinate-chloride and ammonia complexes of palladium(II) were determined. Cyclic voltammetry on a rotating disc electrode was used to study the catalytic activity of nickel substrates and palladium layers in the reaction of methanol and ethanol oxidation in an alkaline medium. It was shown that electrodes with palladium deposited from mixed glycinate-chloride solutions have a higher catalytic activity that those formed from ammonia palladium(II) complexes.  相似文献   

13.
Paz AC  Javaherian S  McGuigan AP 《Lab on a chip》2011,11(20):3440-3448
Despite the importance of epithelial tissue in most major organs there have been limited attempts to tissue engineer artificial epithelium. A key feature of mature epithelium is the presence of an apical-basal polarization, which develops over 7-20 days in culture. Currently, the most widely used 2D system to generate polarized epithelium in vitro involves the filter insert culture system, however this system is expensive, laborious and requires large numbers of cells per sample. We have developed a set of micropatterning techniques to spatially control the organization of epithelial cells into microsheets on filter inserts under the culture conditions necessary to induce epithelial cell polarization. Micropatterning improves cell uniformity within each microsheet, allows multiple sheet analysis on one filter insert, and reduced cell number requirements. We describe an agarose patterning method that allows maintenance of cell patterns for over 15 days, the time necessary to induce apical-basal polarization. We also describe a Parafilm? patterning method that allows patterning for 5 to 15 days depending on cell type and only allows the generation of stripes and circular microsheets. The parafilm? method however is extremely straightforward and could be easily adopted by any laboratory without the need of access to specialized microfabrication equipment. We also demonstrate that micropatterning epithelial cells does not alter the localization of the apical-basal marker ZO-1 or the formation of cilia, a marker of epithelium maturation. Our methods provide a novel tool for studying epithelial biology in polarized epithelium microsheets of controlled size.  相似文献   

14.
This paper describes a rational approach for reproducibly patterning single Au nanoparticles, 15-20-nm diameter, on silicon wafer substrates. The approach uses scanning probe oxidation (SPO) to pattern silicon oxide nanodomain arrays on silicon substrates modified with octadecyltrimethoxysilane (OTS). It was usually found using aminopropyltrimethoxysilane (APS) that Au nanoparticles only assembled at the domain boundaries probably because of asymmetrically distributed hydroxyl groups. To generate uniformly distributed hydroxyl groups on oxide domains, we employed a two-step treatment to etch and oxidize the substrate. With this treatment, oxide domains consistently attached Au nanoparticles to maximum capacity. Single Au nanoparticles were readily patterned by fabricating oxide nanodomains with a diameter below 30 nm. We also investigated the deposition of APS on OTS monolayers, which resulted in the assembly of Au nanoparticles outside of the oxide domains, and proposed two alternative methods to inhibit it.  相似文献   

15.
Photoactivatable fluorescent probes are invaluable tools for the study of biological processes with high resolution in space and time. Numerous strategies have been developed in generating photoactivatable fluorescent probes, most of which rely on the photo-"uncaging" and photoisomerization reactions. To broaden photoactivation modalities, here we report a new strategy in which the fluorophore is generated in situ through an intramolecular tetrazole-alkene cycloaddition reaction ("photoclick chemistry"). By conjugating a specific microtubule-binding taxoid core to the tetrazole/alkene prefluorophores, robust photoactivatable fluorescent probes were obtained with fast photoactivation (~1 min) and high fluorescence turn-on ratio (up to 112-fold) in acetonitrile/PBS (1:1). Highly efficient photoactivation of the taxoid-tetrazoles inside the mammalian cells was also observed under a confocal fluorescence microscope when the treated cells were exposed to either a metal halide lamp light passing through a 300/395 filter or a 405 nm laser beam. Furthermore, a spatially controlled fluorescent labeling of microtubules in live CHO cells was demonstrated with a long-wavelength photoactivatable taxoid-tetrazole probe. Because of its modular design and tunability of the photoactivation efficiency and photophysical properties, this intramolecular photoclick reaction based approach should provide a versatile platform for designing photoactivatable fluorescent probes for various biological processes.  相似文献   

16.
The homogeneous line shapes of the infrared spectrum of single small molecules adsorbed on a graphite substrate are determined by applying a renormalization technique to the Hamiltonian of the system. The absorption profile can be determined by using a cumulant series expansion theory to treat the dynamic couplings between the optical system (formed by the vibration-orientation modes of the molecule) and the bath modes (characterized by molecular translations and substrate phonons). The various causes of homogeneous broadening of the lines are studied, with emphasis on phase relaxations through orientation-phonon transfers.  相似文献   

17.
18.
In order to study the chiral effects of polylactides on responses of osteoblastic cells, poly(l-lactide) (PLLA), poly(d-lactide) (PDLA), poly(dl-lactide) (PDLLA) and the stereocomplex of PLLA and PDLLA (SC) films with different stereoforms were prepared. The surface properties of the four polylactide films were tested and the osteoblastic ROS 17/2.8 cells were cultured on the films. The protein adsorption behaviors of fibrinogen and bovine serum albumin on films were studied. The cell proliferation, total protein amount, DNA content and alkaline phosphatase activity of osteoblastic ROS 17/2.8 cells were evaluated. The results showed that the protein adsorption was dependant on the type of proteins. The observation of cell morphologies revealed that the PDLA film provide an unfavorable surface for cell attachment. The total protein amount, DNA content and ALP activity were closely related to the stereoforms of polylactide films. All the levels of total protein amount, DNA content and ALP activity of ROS 17/2.8 cells on PDLA film were decreased. The racemic stereocomplex of PLLA and PDLA showed relatively higher positive effects on both cell growth and proliferation.  相似文献   

19.
Sequential patterning of two fluorescent streptavidins (SAvs) was carried out using photopatterning of photoactivatable biotin (photobiotin) on an aminodextran surface, which was crucial for the minimization of non-specific binding. Photobiotin was bound by photoreaction to the amine groups of aminodextran. Water contact angle at each step during the preparation of the aminodextran surface was measured to investigate the hydrophilicity of the surfaces. The specific and nonspecific binding of a fluorescent SAv was investigated for the aminodextran surface and the amine-silane surface. The aminodextran surface almost entirely prevented nonspecific binding of a fluorescent SAv and was successfully used for sequential patterning of two fluorescent SAvs. The addition of ethanolamine (40 mM) in the photobiotin solution diminished blurring of pattern shape. To decrease pattern size, the UV light was focused on the aminodextran surface in an inverted microscope system. Under optimized conditions, two fluorescent SAvs array of approximately 25 μm size was obtained using a shadow mask of 100 μm hole size in the inverted microscope system.  相似文献   

20.
Two‐dimensional materials have aroused great interests because of their unique properties not seen in the bulk counterparts. The interface of the ZnS single sheet and substrates are studied in this paper. Different from isolated ZnS single sheet, here in this study, the ZnS single sheet has a remarkable corrugation feature because of the interaction between the ZnS single sheet and the substrate. The top‐site Zn means an attractive reaction with the substrate while the top‐site S means repulsive. For ZnS single sheet/Si(111) interface, the symmetry of the interface does not decrease after geometry optimization because the two layers have a good lattice matching. For ZnS single sheet/Ag(111) interface, an unbalanced interaction (attractive or repulsive) between the ZnS single sheet (Zn or S atom) and Ag surface leads to remarkable corrugation of the ZnS single sheet and the symmetry of the interface decreases. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号