首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let {T 01 2 ,...,T 0k 2 } be dependent statistics of the Lawley-Hotelling type having a specified structure of dependence. It is shown that $$P(T_{01}^2 \leqq c_1 , \cdots ,T_{0k}^2 \leqq c_k ) \geqq \prod\limits_{i = 1}^k {P(T_{0i}^2 \leqq c_i )} $$ a special case of which yields bounds on the joint distribution of Hotelling'sT 2 statistics. Applications are made in the comparison of multivariate response models and in the construction of conservative simultaneous confidence sets.  相似文献   

2.
The following matrices are considered $$A_k = \left( {\begin{array}{*{20}c} k \\ 1 \\ \end{array} \begin{array}{*{20}c} 2 \\ k \\ \end{array} } \right), B_k \left( {\begin{array}{*{20}c} {k - 1} \\ 1 \\ \end{array} \begin{array}{*{20}c} 1 \\ {k + 1} \\ \end{array} } \right),k \in \mathbb{N},$$ which are strong shift equivalent in the sense ofWilliams [7]. In case \(k + \sqrt 2 \) is a prime number of the algebraic field \(\mathbb{Q}(\sqrt 2 )\) matrices are defined which determine the possible choices of rank two matrices connectingA k andB k in the sense of strong shift equivalence. A complete list of all these matrices is given.  相似文献   

3.
For any 1-lipschitz ergodic map F: ? p k ? ? p k , k >1 ∈ ?, there are 1-lipschitz ergodic map G: ? p ? ? p and two bijections H k , T k, P that $G = H_k \circ T_{k,P} \circ F \circ H_k^{ - 1} andF = H_k^{ - 1} \circ T_{k,P - 1} \circ G \circ H_k $ .  相似文献   

4.
Let F n be the nth Fibonacci number. The Fibonomial coefficients \(\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F\) are defined for nk > 0 as follows $$\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F = \frac{{F_n F_{n - 1} \cdots F_{n - k + 1} }} {{F_1 F_2 \cdots F_k }},$$ with \(\left[ {\begin{array}{*{20}c} n \\ 0 \\ \end{array} } \right]_F = 1\) and \(\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F = 0\) . In this paper, we shall provide several identities among Fibonomial coefficients. In particular, we prove that $$\sum\limits_{j = 0}^{4l + 1} {\operatorname{sgn} (2l - j)\left[ {\begin{array}{*{20}c} {4l + 1} \\ j \\ \end{array} } \right]_F F_{n - j} = \frac{{F_{2l - 1} }} {{F_{4l + 1} }}\left[ {\begin{array}{*{20}c} {4l + 1} \\ {2l} \\ \end{array} } \right]_F F_{n - 4l - 1} ,}$$ holds for all non-negative integers n and l.  相似文献   

5.
Enumerating rooted simple planar maps   总被引:1,自引:0,他引:1  
The main purpose of this paper is to find the number of combinatorially distinct rooted simpleplanar maps,i.e.,maps having no loops and no multi-edges,with the edge number given.We haveobtained the following results.1.The number of rooted boundary loopless planar [m,2]-maps.i.e.,maps in which there areno loops on the boundaries of the outer faces,and the edge number is m,the number of edges on theouter face boundaries is 2,is(?)for m≥1.G_0~N=0.2.The number of rooted loopless planar [m,2]-maps is(?)3.The number of rooted simple planar maps with m edges H_m~s satisfies the following recursiveformula:(?)where H_m~(NL) is the number of rooted loopless planar maps with m edges given in [2].4.In addition,γ(i,m),i≥1,are determined by(?)for m≥i.γ(i,j)=0,when i>j.  相似文献   

6.
Рассматривается сис тема ортогональных м ногочленов {P n (z)} 0 , удовлетворяющ их условиям $$\frac{1}{{2\pi }}\int\limits_0^{2\pi } {P_m (z)\overline {P_n (z)} d\sigma (\theta ) = \left\{ {\begin{array}{*{20}c} {0,m \ne n,P_n (z) = z^n + ...,z = \exp (i\theta ),} \\ {h_n > 0,m = n(n = 0,1,...),} \\ \end{array} } \right.} $$ где σ (θ) — ограниченная неу бывающая на отрезке [0,2π] функция с бесчисленным множе ством точек роста. Вводится последовательность параметров {аn 0 , независимых дру г от друга и подчиненных единств енному ограничению { ¦аn¦<1} 0 ; все многочлены {Р n (z)} 0/∞ можно найти по формуле $$P_0 = 1,P_{k + 1(z)} = zP_k (z) - a_k P_k^ * (z),P_k^ * (z) = z^k \bar P_k \left( {\frac{1}{z}} \right)(k = 0,1,...)$$ . Многие свойства и оце нки для {P n (z)} 0 и (θ) можн о найти в зависимости от этих параметров; например, условие \(\mathop \Sigma \limits_{n = 0}^\infty \left| {a_n } \right|^2< \infty \) , бо лее общее, чем условие Г. Cerë, необходимо и достато чно для справедливости а симптотической форм улы в области ¦z¦>1. Пользуясь этим ме тодом, можно найти также реш ение задачи В. А. Стекло ва.  相似文献   

7.
Let (Ω, ?,P) be the infinite product of identical copies of the unit interval probability space. For a Lebesgue measurable subsetI of the unit interval, let \(A(N,I,\omega ) = \# \left\{ {n \leqslant N|\omega _n \varepsilon I} \right\}\) , where ω=(ω12,...). For integersm>1, and 0≤r<m, define $$\varepsilon (k,r,m,I,\omega ) = \left\{ {\begin{array}{*{20}c} {1\,if\,A(k,I,\omega ) \equiv r(\bmod m)} \\ {0\,otherwise} \\ \end{array} } \right.$$ and $$\eta (k,m,I,\omega ) = \left\{ {\begin{array}{*{20}c} {1\,if\,(A(k,I,\omega ),m) \equiv 1} \\ {0\,otherwise.} \\ \end{array} } \right.$$ A theorem ofK. L. Chung yields an iterated logarithm law and a central limit theorem for sums of the variables ε(k) and η(k).  相似文献   

8.
N. Ruškuc 《Semigroup Forum》1995,51(1):319-333
Some presentations for the semigroups of all 2×2 matrices and all 2×2 matrices of determinant 0 or 1 over the field GF(p) (p prime) are given. In particular, if <a, b, c‖ R> is any (semigroup) presentation for the general linear group in terms of generators $$A = \left( {\begin{array}{*{20}c} 1 & 0 \\ 1 & 1 \\ \end{array} } \right),B = \left( {\begin{array}{*{20}c} 1 & 1 \\ 0 & 1 \\ \end{array} } \right),C = \left( {\begin{array}{*{20}c} 1 & 0 \\ 0 & \xi \\ \end{array} } \right),$$ where ζ is a primitive root of 1 modulop, then the presentation $$\langle a,b,c,t|R,t^2 = ct = tc = t,tba^{p - 1} t = 0,b^{\xi - 1} atb = a^{\xi - 1} tb^\xi a^{1 - \xi - 1} \rangle $$ defines the semigroup of all 2×2 matrices over GF (2,p) in terms of generatorsA, B, C and $$T = \left( {\begin{array}{*{20}c} 1 & 0 \\ 0 & 0 \\ \end{array} } \right).$$ Generating sets and ranks of various matrix semigroups are also found.  相似文献   

9.
Пусть Tn(f)={L1(f), ..., Ln(f)} — набор линейных функционал ов, заданных на простран стве \(C_{(r - 1)} (\parallel f\parallel _{C_{(r - 1)} } = \mathop {\max }\limits_{0 \leqq i \leqq r - 1} \parallel f^{(i)} \parallel _C );A_{n,r}\) — множество всех так их наборов функцио налов; С2n, 2 — множество всех н аборов из 2n функциона лов вида $$T_{2n} (f) = \{ f(x_1 ), \ldots ,f(x_n ),f'(x_1 ), \ldots ,f'(x_n )\}$$ и s: Еn→Е1. Доказано, что е слиW r множество всех 2π-периодических функ цийfεW∞0, 2πr, то приr=1,2,3,... ирε(1, ∞) и $$\begin{gathered} \mathop {\inf }\limits_{T_{2n} \in A_{2n,r} } \parallel \mathop {\inf }\limits_s \mathop {\sup }\limits_{f \in W_\infty ^r } |f( \cdot ) - s(T_{2n} ,f, \cdot )|\parallel _p = \parallel \varphi _{n,r} \parallel _p \hfill \\ \mathop {\inf }\limits_{T_{2n} \in C_{2n,2} } \parallel \mathop {\inf }\limits_s \mathop {\sup }\limits_{f \in W_\infty ^r } |f( \cdot ) - s(T_{2n} ,f, \cdot )|\parallel _p = \parallel \parallel \varphi _{n,r} \parallel _\infty - \varphi _{n,r} \parallel _p , \hfill \\ \end{gathered}$$ где ?n,rr-й периодичес кий интеграл, в средне м равный нулю на периоде, от фун кции ?n, 0t=sign sinnt. При этом указан ы оптимальные методы приближенного вычис ления.  相似文献   

10.
This paper is a continuation of [3]. Suppose f∈Hp(T), 0σ r σ f,σ=1/p?1. When p=1, it is just the partial Fourier sums Skf. In this paper we establish the sharp estimations on the degree of approximation: $$\left\{ { - \frac{1}{{logR}}\int\limits_1^R {\left\| {\sigma _r^\delta f - f} \right\|_{H^p (T)}^p \frac{{dr}}{r}} } \right\}^{1/p} \leqq C{\mathbf{ }}{}_p\omega \left( {f,{\mathbf{ }}( - \frac{1}{{logR}})^{1/p} } \right)_{H^p (T)} ,0< p< 1,$$ and \(\frac{1}{{\log L}}\sum\limits_{k - 1}^L {\frac{{\left\| {S_k f - f} \right\|_H 1_{(T)} }}{k} \leqq Cp\omega (f; - \frac{1}{{\log L}})_H 1_{(T)} } \) Where $$\omega (f,{\mathbf{ }}h)_{H^p (T)} \begin{array}{*{20}c} { = Sup} \\ {0 \leqq \left| u \right| \leqq h} \\ \end{array} \left\| {f( \cdot + u) - f( \cdot )} \right\|_{H^p (T).} $$ .  相似文献   

11.
Say that two compositions of n into k parts are related if they differ only by a cyclic shift. This defines an equivalence relation on the set of such compositions. Let ${\left\langle \begin{array}{c}n \\ k\end{array} \right\rangle}$ denote the number of distinct corresponding equivalence classes, that is, the number of cyclic compositions of n into k parts. We show that the sequence ${\left\langle\begin{array}{c}n \\ k\end{array}\right\rangle}$ is log-concave and prove some results concerning ${\left\langle \begin{array}{c}n \\ k \end{array} \right\rangle}$ modulo two.  相似文献   

12.
Letμ>m?1, letν be a rational number, and letω k=b k v , where bk ≠ 0 are distinct numbers of an imaginary quadratic field K, which satisfy some additional conditions. Then $$\begin{gathered} |{}_1x_1 \omega _1 + ... + x_m \omega _m | > X^{ - \mu } , \hfill \\ X = \max |x_k | \geqslant X, > 0, \hfill \\ 1 \leqslant k \leqslant m \hfill \\ \end{gathered}$$ where x1, ..., xm are integers of the field K, and X0 is an effective constant.  相似文献   

13.
In this paper we consider the behaviour of partial sums of Fourier—Walsh—Paley series on the group62-01. We prove the following theorems: Theorem 1. Let {n k } k =1/∞ be some increasing convex sequence of natural numbers such that $$\mathop {\lim sup}\limits_m m^{ - 1/2} \log n_m< \infty $$ . Then for anyfL (G) $$\left( {\frac{1}{m}\sum\limits_{j = 1}^m {|Sn_j (f;0)|^2 } } \right)^{1/2} \leqq C \cdot \left\| f \right\|_\infty $$ . Theorem 2. Let {n k } k =1/∞ be a lacunary sequence of natural numbers,n k+1/n kq>1. Then for anyfεL (G) $$\sum\limits_{j = 1}^m {|Sn_j (f;0)| \leqq C_q \cdot m^{1/2} \cdot \log n_m \cdot \left\| f \right\|_\infty } $$ . Theorems. Let µ k =2 k +2 k-2+2 k-4+...+2α 0,α 0=0,1. Then $$\begin{gathered} \{ \{ S_{\mu _k } (f:0\} _{k = 1}^\infty ;f \in L^\infty (G)\} = \{ \{ a_k \} _{k = 1}^\infty ;\sum\limits_{k = 1}^m {a_k^2 = 0(m)^2 \} .} \hfill \\ \{ \{ S_{\mu _k } (f:0\} _{k = 1}^\infty ;f \in C(G)\} = \{ \{ a_k \} _{k = 1}^\infty ;\sum\limits_{k = 1}^m {a_k^2 = o(m)^2 \} = } \hfill \\ = \{ \{ S_{\mu _k } (f:0\} _{k = 1}^\infty ;f \in C(G),f(0) = 0\} \hfill \\ \end{gathered} $$ . Theorem 4. {{S 2 k(f: 0)} k =1/∞ ,fL (G)}=m. $$\{ \{ S_{2_k } (f:0\} _{k = 1}^\infty ;f \in C(G)\} = c. \{ \{ S_{2_k } (f:0\} _{k = 1}^\infty ;f \in C(G),f(0) = 0\} = c_0 $$ .  相似文献   

14.
Let A be a complex matrix of order n, n ≥ 3 . We associate with A the 3n $$Q(\gamma ) = \left( {\begin{array}{*{20}c} A & {_{\gamma 1} I_n } & {_{\gamma 3} I_n } \\ 0 & A & {_{\gamma 2} I_n } \\ 0 & 0 & A \\ \end{array} } \right),$$ where γ1, γ2, γ3 are scalar parameters and γ = (γ1, γ2, γ3). Let σi, 1 ≤ i ≤ 3n, be the singular values of Q(γ), in decreasing order. Under certain assumptions on A, the authors have proved earlier that the 2-norm distance from A to the set $\mathcal{M}$ of matrices with a zero eigenvalue of multiplicity at least 3 is equal to max $$\begin{array}{*{20}c} {\max } \\ {\gamma 1,\gamma 2,\gamma 3 \in \mathbb{C}} \\ \end{array} \;^\sigma 3n - 2(Q(\gamma )).$$ Now, the justification of this formula for the distance is given for an arbitrary matrix A.  相似文献   

15.
We show that if f: M 3M 3 is an A diffeomorphism with a surface two-dimensional attractor or repeller $\mathcal{B}$ with support $M_\mathcal{B}^2$ , then $\mathcal{B} = M_\mathcal{B}^2$ and there exists a k ≥ 1 such that (1) $M_\mathcal{B}^2$ is the disjoint union M 1 2 ? ? ? M k 2 of tame surfaces such that each surface M i 2 is homeomorphic to the 2-torus T 2; (2) the restriction of f k to M i 2 , i ∈ {1,..., k}, is conjugate to an Anosov diffeomorphism of the torus T 2.  相似文献   

16.
We will solve several fundamental problems of Möbius groupsM(R n) which have been matters of interest such as the conjugate classification, the establishment of a standard form without finding the fixed points and a simple discrimination method. Let \(g = \left[ {\begin{array}{*{20}c} a &; b \\ c &; d \\ \end{array} } \right]\) be a Clifford matrix of dimensionn, c ≠ 0. We give a complete conjugate classification and prove the following necessary and sufficient conditions:g is f.p.f. (fixed points free) iff \(g \sim \left[ {\begin{array}{*{20}c} \alpha &; 0 \\ c &; {\alpha '} \\ \end{array} } \right]\) , |α|<1 and |E?AE 1| ≠ 0;g is elliptic iff \(g \sim \left[ {\begin{array}{*{20}c} \alpha &; \beta \\ c &; {\alpha '} \\ \end{array} } \right]\) , |α| <1 and |E?AE 1|=0;g is parabolic iff \(g \sim \left[ {\begin{array}{*{20}c} \alpha &; 0 \\ c &; {\alpha '} \\ \end{array} } \right]\) , |α|=1; andg is loxodromic iff \(g \sim \left[ {\begin{array}{*{20}c} \alpha &; \beta \\ c &; {\alpha '} \\ \end{array} } \right]\) , |α| >1 or rank (E?AE 1) ≠ rank (E?AE 1,ac ?1+c ?1 d), where α is represented by the solutions of certain linear algebraic equations and satisfies $\left| {c^{ - 1} \alpha '} \right| = \left| {\left( {E - AE^1 } \right)^{ - 1} \left( {\alpha c^{ - 1} + c^{ - 1} \alpha '} \right)} \right|.$   相似文献   

17.
We consider the second-order matrix differential operator $$N = \left( {\begin{array}{*{20}c} { - \frac{d}{{dx}}\left( {p_0 \frac{d}{{dx}}} \right) + p_1 } \\ r \\ \end{array} \begin{array}{*{20}c} r \\ { - \frac{d}{{dx}}\left( {q_0 \frac{d}{{dx}}} \right) + q_1 } \\ \end{array} } \right)$$ determined by the expression Nφ, [0 ?x < ∞), where \(\phi = \left( {\begin{array}{*{20}c} U \\ V \\ \end{array} } \right)\) . It has been proved that if p0, q0, p1, q1,r satisfy certain conditions, then N is in the limit point case at ∞. It has been also shown that certain differential operators in the Hilbert space L2 of vectors, generated by the operator N, are symmetric and self-adjoint.  相似文献   

18.
In this paper, we first present an impulsive version of Filippov's Theorem for fractional differential inclusions of the form, $$\begin{array}{lll} \quad \qquad D^{\alpha}_{*}y(t) & \in & F(t, y(t)), \quad\; {\rm a.e.}\ t\, \in \, J{\backslash} \{t_{1}, \ldots, t_{m}\}, \ \alpha\, \in \, (0,1], \\ y(t^{+}_{k}) - y(t^{-}_{k}) & = & I_{k}(y(t^{-}_{k})), \quad k = 1, \ldots, m, \\ \qquad \qquad y(0) & = & a,\end{array}$$ where J = [0, b], ${D^{\alpha}_{*}}$ denotes the Caputo fractional derivative and F is a set-valued map. The functions I k characterize the jump of the solutions at impulse points t k ( ${k = 1, \ldots , m}$ ). In addition, several existence results are established, under both convexity and nonconvexity conditions on the multivalued right-hand side. The proofs rely on a nonlinear alternative of Leray-Schauder type and on Covitz and Nadler??s fixed point theorem for multivalued contractions. The compactness of solution sets is also investigated.  相似文献   

19.
LetQ(x) denote a quadratic form over the rational integers in four variables (x=(x1,...,x4)). ThenQ is representable as a symmetric matrix. Assume this matrix to be non-singular modp(p≠2 prime); then the “inverse” quadratic formQ ?1 modp can be defined. Letf:?4→? be defined such that the Fourier transformf exists and the sum $$\sum\limits_{x \in \mathbb{Z}^4 } {f(c x), c \in \mathbb{R}, c \ne 0} $$ is convergent. Furthermore, letm=p 1...p k be the product ofk distinct primes withm>1, 2×m; let $$\varepsilon = \prod\limits_{i = 1}^k {\left( {\frac{{\det Q}}{{p_i }}} \right)} \ne 0$$ for the Legendre symbol $$\left( {\frac{ \cdot }{p}} \right)$$ ; define $$B_i (Q,x) = \left\{ {\begin{array}{*{20}c} {1 for Q(x) \equiv 0\bmod p_i } \\ , \\ {0 for Q(x)\not \equiv 0\bmod p_i } \\ \end{array} } \right.$$ and forr∈?,r>0, $$F(Q,f,r) = \sum\limits_{x \in \mathbb{Z}^4 } {\left( {\prod\limits_{i = 1}^k {\left( {B_i (Q,x) - \frac{1}{{p_i }}} \right)} } \right)f(r^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} x)} $$ Then we have $$F(Q,f,m) = \varepsilon F(Q^{ - 1} ,\hat f,m)$$   相似文献   

20.
Let X be a real uniformly convex Banach space and C a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let T 1, T 2: CX be two uniformly L-Lipschitzian, generalized asymptotically quasi-nonexpansive non-self-mappings of C satisfying condition A′ with sequences {k n (i) } and {δ n (i) } ? [1, ∞),, i = 1, 2, respectively such that Σ n=1 (k n (i) ? 1) < ∞, Σ n=1 (i) δ n (i) < ∞, and F = F(T 1) ∩ F(T 2) ≠ ?. For an arbitrary x 1C, let {x n } be the sequence in C defined by $$ \begin{gathered} y_n = P\left( {\left( {1 - \beta _n - \gamma _n } \right)x_n + \beta _n T_2 \left( {PT_2 } \right)^{n - 1} x_n + \gamma _n v_n } \right), \hfill \\ x_{n + 1} = P\left( {\left( {1 - \alpha _n - \lambda _n } \right)y_n + \alpha _n T_1 \left( {PT_1 } \right)^{n - 1} x_n + \lambda _n u_n } \right), n \geqslant 1, \hfill \\ \end{gathered} $$ where {α n }, {β n }, {γ n } and {λ n } are appropriate real sequences in [0, 1) such that Σ n=1 ] γ n < ∞, Σ n=1 λ n < ∞, and {u n }, }v n } are bounded sequences in C. Then {x n } and {y n } converge strongly to a common fixed point of T 1 and T 2 under suitable conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号