首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this paper,the linear exact solution and nonlinear solutionfor U-shaped bellows have been obtained by using the general so-lution of circular ring shell and the method of perturbation.  相似文献   

2.
In this paper the general asymptotic analytical solution of plane problem of elasto-plasticity with strain-hardening[2] is used in solving the problem of an infinitely large plate containing a circular hole under simple tension, and the analytical expressions of stress components of the first two approximations are given. These results are compared with the numerical and the experimental results given by other authors[4, 5], and a good agreement is obtained. At the end of this paper the authors inspect the correctness of Neuber's formula[9] for this problem.  相似文献   

3.
In this paper, the perturbation solution of large deflection problem of clamped elliptical plate subjected to uniform pressure is given on the basis of the perturbation solution of large deflection problem of similar clamped circular plate (1948), (1954). The analytical solution of this problem was obtained in 1957. However, due to social difficulties, these results have never been published. Nash and Cooley (1959) published a brief note of similar nature, in which only the case λ=a/b=2 is given. In this paper, the analytical solution is given in detail up to the 2nd approximation. The numerical solutions are given for various Poisson ratios v=0.25, 0.30, 0.35 and for various eccentricities λ=1, 2, 3, 4, 5, which can be used in the calculation of engineering designs.  相似文献   

4.
Based upon the differential equations and their related boundary conditions given in the previous papers[1, 2], using a global interpolation method, this paper presents a numerical solution to the axisymmetric bending problem of non-Kirchhoff-Love theory for circular plate with fixed boundary under uniform surface loading. All the numerical results obtained in this paper are compared with that of Kirchhoff-Love classical theory[3] and E. Reissner's modified theory[4].  相似文献   

5.
The generalized KdV equationu 1+auua+μua3+eua5=0[1] is a typical integrable equation. It is derived studying the dissemination of magnet sound wave in cold plasma[2], the isolated wave in transmission line[3], and the isolated wave in the boundary surface of the divided layer fluid[4]. For the characteristic problem of the generalized KdV equation, this paper, based on the Riemann function, designs a suitable structure, then changes the characteristic problem to an equivalent integral and differential equation whose corresponding fixed point, the above integral differential equation has a unique regular solution, so the characteristic problem of the generalized KdV equation has a unique solution. The iteration solution derived from the integral differential equation sequence is uniformly convegent in .  相似文献   

6.
In this paper, the jumping problems of a circular thin plate with initial deflection are studied by using the method of two variables[3],[4] proposed by Jiang Fu-ru and the method of the normal perturbation (in this paper (1.1), (1.2)). We obtain Nth-order uniformly valid asymptotic expansion of the solution of this problem ((1.66), (1.67)). When the initial deflection vanishes the solution of a circular thinplate with initial deflection is reduced to the solution of the problems of the nonlinear bending of a circular thin plate[6]. If the initial deflection is largish and the signs of the initial deflection with the intensity of the transverse load are opposite, when the intensity of the transverse load reaches a certain value, the circular thin plate with initial deflection should produce the jumping phenomenon[8].  相似文献   

7.
On the basis of the stepped reduction method suggested in [1], we investigate the problem of the bending of elastic circular ring of non-homogeneous and variable cross section under the actions of arbitrary loads. The general solution of this problem is obtained so that it can be used for the calculations of strength and rigidity of practical problems such as arch, tunnel etc. In order to examine results of this paper and explain the application of this new method, an example is brought out at the end of this paper. Circular ring and arch are commonly used structures in engineering. Timoshenko, S.[2], Barber, J. R.[3], Tsumura Rimitsu[4] et al. have studied these problems of bending, but, so far as we know, it has been solely restricted to the general solution of homogeneous uniform cross section ring. The only known solution for the problems with variable cross section ones has been solely restricted to the solution of special case of flexural rigidity in linear function of coordinates. On account of fundamental equations of the non-homogeneous variable cross section problem being variable coefficients, it is very difficult to solve them. In this paper, we use the stepped reduction method suggested in [1] to transform the variable coefficient differential equation into equivalent constant coefficient one. After introducing virtual internal forces, we obtain general solution of an elastic circular ring with non-homogeneity and variable cross section under the actions of arbitrary loads.  相似文献   

8.
In this paper, based on the step reduction method[1] and exact analytic method[2] anew method-exact element method for constructing finite element, is presented. Since the new method doesn ’t need the variational principle, it can be applied to solve non-positive and positive definite partial differential equations with arbitrary variable coefficient. By this method, a quadrilateral noncompatible element with 8 degrees of freedom is derived for the solution of plane problem. Since Jacobi ’s transformation is not applied, the present element may degenerate into a triangle element. It is convenient to use the element in engineering. In this paper, the convergence is proved. Numerical examples are given at the endof this paper, which indicate satisfactory results of stress and displacements can be obtained and have higher numerical precision in nodes.  相似文献   

9.
In this paper, based on paper [1], the analytic expression of the torsion function for a cylinder containing arbitrary oriented cracks is obtained. The problem is reduced to solve a system of singular integral equations for the unknown dislocation density functions. Using the numerical method of the singular integral equations[2,7] the torsional rigidities and stress intensity factors are evaluated for several multicracked cylinders. Next, the creak-cutting method[5] is firstly extended to lve the torsion problem for a rectangular prism. The numerical results show that the method presented here is successful. Projects Supported by the Science Fund of the Chinese Academy of Sciences.  相似文献   

10.
In a previous paper (1979)[1], the minimum potential energy principle and stationary complementary energy principle for nonlinear elasticity with finite displacement, together with various complete and incomplete generalized principles were studied. However, the statements and proofs of these principles were not so clearly stated about their constraint conditions and their Euler equations. In somecases, the Euler equations have been mistaken as constraint conditions. For example, the stress displacement relation should be considered as Euler equation in complementary energy principle but have been mistaken as constraint conditions in variation. That is to say, in the above mentioned paper, the number of constraint conditions exceeds the necessary requirement. Furthermore, in all these variational principles, the stress-strain relation never participate in the variation process as constraints, i.e., they may act as a constraint in the sense that, after the set of Euler equations is solved, the stress-strain relation may be used to derive the stresses from known strains, or to derive the strains from known stresses. This point was not clearly mentioned in the previous paper (1979)[1]. In this paper, the high order Lagrange multiplier method (1983)[2] is used to construct the corresponding generalized variational principle in more general form. Throughout this paper, V/.V. Novozhilov's results (1958)[3] for nonlinear elasticity are used.  相似文献   

11.
Nonlinear MHD Kelvin-Helmholtz (K-H) instability in a pipe is treated with the derivative expansion method in the present paper. The linear stability problem was discussed in the past by Chandrasekhar (1961)[1] and Xu et al. (1981).[6]Nagano (1979)[3] discussed the nonlinear MHD K-H instability with infinite depth. He used the singular perturbation method and extrapolated the obtained second order modifier of amplitude vs. frequency to seek the nonlinear effect on the instability growth rate γ. However, in our view, such an extrapolation is inappropriate. Because when the instability sets in, the growth rates of higher order terms on the right hand side of equations will exceed the corresponding secular producing terms, so the expansion will still become meaningless even if the secular producing terms are eliminated. Mathematically speaking, it's impossible to derive formula (39) when γ 0 2 is negative in Nagano's paper.[3]Moreover, even as early as γ 0 2 → O+, the expansion becomes invalid because the 2nd order modifier γ2 (in his formula (56)) tends to infinity. This weakness is removed in this paper, and the result is extended to the case of a pipe with finite depth. Theproject is supported by the National Natural Science Foundation of China.  相似文献   

12.
A fundamental solution for half-plane problems which will play a key role in calculation of the stress concentration around a hole embedded in half-plane is derived by a method combining images with direct integrations. It is wore intuitive than the Fourier transform method used by Gladwell[6]. In addition, the principle and procedure of boundary element method to solve the half-plane problems are also presented by means of Betti’s reciprocal theorem in this paper.It is shown that the. computing procedure for half-plane problems is much more convenient using the fundamental solution presented here than the one adopted by C.A.  相似文献   

13.
In this paper applying M. I. Visik’s and L. R. Lyuster-nik’s[1] asymptotic method and principle of fixed point of functional analysis, we study the singular perturbation of general boundary value problem for higher order quasilinear elliptic equation in the case of boundary perturbation combined with equation perturbation. We prove the existence and uniqueness of solution for perturbed problem. We give its asymptotic approximation and estimation of related remainder term.  相似文献   

14.
This paper proves Love’s stress function of space axisymmetric problem can be represented by choosing two generalized analytic functions of complex variates reasonably[1], and deduces the expressions of the components of stress displacements and boundary conditions in complex function. To present the feasibility of the method here and examining the truth of the formulae founded in this paper, the problem of circular shaft with globular cavity pressed on the side and pulled at the ends is solved by using power series and the result is the same as that solved by other methods. In the end, the problem of a cone sheared by uniform shear stress on the sideface is solved, and the solution of a cone acted on by gravity is given by converting constant body forces into surface forces.  相似文献   

15.
In this paper, the equation of axisymmetrical deformation problems for a general shell of revolution is derived in one complex variable under the usual Love-Kirchhoff assumption. In the case of circular ring shells, this equation may be simplified into the equation given by F.Tölke(1938)[3], R.A.Clark(1950)[4]and V.V.Novozhilov(1951)[5]. When the horizontal radius of the shell of revolution is much larger than the average radius of curvature of meridian curve, this equation in complex variable may be simplified into the equation for slander ring shells. If the ring shell is circular in shape, then this equation can be reduced into the equation in complex variable for slander circular ring shells given by this author (1979)[6]. If the form of elliptic cross-section is near a circle, then the equation of slander ring shell with near-circle ellipitic cross-section may be reduced to the complex variable equation similar in form for circular slander ring shells.  相似文献   

16.
The circular are corrugated diaphragins are taken in this paper and structures of several sections of the ring shells and a central cireular plale I matrices and link matrices are derived by using Prof. Chuen Hei-zang’s general the ring shell[1] and perturbation theory of the circular thin plates. Throngh the meined of matrices conjoint multiplication, the linear exact solution and nonlinear soluaen are obtained. The resutts agree with that of the experiments presented by W. A. Wildhack..  相似文献   

17.
There is a common difficulty in elastic-plastic impact codes such as EPIC [2,3].NONSAP [4],etc. Most of these codes use the simple linear functions usually taken from static problem to represent the displacement components. In such finite element formulation, the stress components are constant in each element and they are discontinuous in any two neighboring elements. Therefore, the bases of using the virtual work principle in such elements are unreliable. In this paper, we introduce a new method, namely, the compatible stress iterative method, to eliminate the above-said difficulty. The calculated examples show that the calculation using the new method in dynamic finite element analysis of high velocity impact is valid and stable, and the element stiffness can be somewhat reduced.This is a part of the author's Ph. D dissertation under the supervision of Professor Chien Wei-zang.  相似文献   

18.
A photoelectric-computer data processing(PCP)prog-ram in experimental photo-stress analysis is presented in this paper.The basic equation of photoelastic stress analysis by Chen(1962)is adopted,and a cubic spline function suitable for processing photoelastic data is derived.This program requires minimum data input to the computer.It has been proved that the program is more accurate and more time-saving than any other methods so far as we know.  相似文献   

19.
This paper discusses the solution of a group of two-order six elements rootedalgebraic simultaneous equations set up by cosine law arising from the application example of subjectivity geometry[1]. By means of the implicit function theorem, this paper proves that there exists a unique real solution of those equations. Transforming this problem into an unconstrained nonlinear optimization problem, the solution can be found by known methods. A numerical example by descent method is given.Supported by Scientific Foundation of South China Unviersity of Technology. Ben Xiu-ming took part in the calculation.  相似文献   

20.
In this paper we construct a completely exponentially fitted finite difference scheme for the boundary value problem of differential equation with turning points, extending Miller’s method[1] and simplifying the method of the proof We prove the first order uniform convergence of the scheme. The numerical results show that it is better than Hin’s[2] scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号