首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
We study the effect of electrostatic interactions on the distribution function of the end-to-end distance of a single polyelectrolyte chain in the rod-like limit. The extent to which the radial distribution function of a polyelectrolyte is reproduced by that of a wormlike chain with an adjusted effective persistence length is investigated. Strong evidence is found for a universal scaling formula connecting the effective persistence length of a polyelectrolyte with the strength of the electrostatic interaction and the Debye screening length. Received 4 March 2002 and Received in final form 1 July 2002 RID="a" ID="a"e-mail: jrudnick@physics.ucla.edu  相似文献   

2.
We use large-scale Monte Carlo simulations to test scaling theories for the electrostatic persistence length l e of isolated, uniformly charged polymers with Debye-Hückel intrachain interactions in the limit where the screening length κ-1 exceeds the intrinsic persistence length of the chains. Our simulations cover a significantly larger part of the parameter space than previous studies. We observe no significant deviations from the prediction l e∝κ-2 by Khokhlov and Khachaturian which is based on applying the Odijk-Skolnick-Fixman theories of electrostatic bending rigidity and electrostatically excluded volume to the stretched de Gennes-Pincus-Velasco-Brochard polyelectrolyte blob chain. A linear or sublinear dependence of the persistence length on the screening length can be ruled out. We show that previous results pointing into this direction are due to a combination of excluded-volume and finite chain length effects. The paper emphasizes the role of scaling arguments in the development of useful representations for experimental and simulation data. Received 12 February 2002  相似文献   

3.
4.
QU Li-Jian 《理论物理通讯》2012,57(6):1091-1094
Scaling theory of charged cylindrical polyelectrolyte brushes is developed. The dependence of brush thickness on the grafting density, charge fraction, and chain length is analyzed. A full phase diagram is established. Characteristics and boundaries between different regimes of cylindrical polyelectrolyte brushes are summarized. Special attentions are paid to electrostatic interaction induced stiffening and counterion condensation effects. If the Bjerrum length of the solution is larger than the Kuhn length of the polyelectrolyte chains, counterion condensation occurs in the strongly charged polyelectrolyte brushes. On the contrary, the electrostatic interaction stretches the strongly charged grafted polyelectrolyte chains to their contour length.  相似文献   

5.
Variational methods are applied to a single polyelectrolyte chain. The polymer is modeled as a Gaussian chain with screened electrostatic repulsion between all monomers. As a variational Hamiltonian, the most general Gaussian kernel, including the possibility of a classical or mean polymer path, is employed. The resulting self-consistent equations are systematically solved both for large and small monomer-monomer separations along the chain. In the absence of screening, the polymer is stretched on average. It is described by a straight classical path with Gaussian fluctuations around it. If the electrostatic repulsion is screened, the polymer is isotropically swollen for large separations, and for small separations the polymer correlation function is calculated as an analytic expansion in terms of the monomer-monomer separation along the chain. The electrostatic persistence length and the electrostatic blobsize are inferred from the crossover between distinct scaling ranges. We perform a global analysis of the scaling behavior as a function of the screening length and electrostatic interaction strength , where is the Bjerrum length and A is the distance of charges along the polymer chain. We find three different scaling regimes. i) A Gaussian-persistent regime with Gaussian behavior at small, persistent behavior at intermediate, and isotropically swollen behavior at large length scales. This regime occurs for weakly charged polymers and only for intermediate values of the screening length. The electrostatic persistence length is defined as the crossover length between the persistent and the asymptotically swollen behavior and is given by and thus disagrees with previous (restricted) variational treatments which predict a linear dependence on the screening length .ii) A Gaussian regime with Gaussian behavior at small and isotropically swollen behavior at large length scales. This regime occurs for weakly charged polymers and/or strong screening, and the electrostatic repulsion between monomers only leads to subfluent corrections to Gaussian scaling at small separations. The concept of a persistence length is without meaning in this regime. iii) A persistent regime , where the chain resembles a stretched rod on intermediate and small scales. Here the persistence length is given by the original Odijk prediction, , if the overstretching of the chain is avoided. We also investigate the effects of a finite polymer length and of an additional excluded-volume interaction, which modify the resultant scaling behavior. Applications to experiments and computer simulations are discussed. Received 24 December 1997  相似文献   

6.
In a SANS experiment, we have directly determined for the first time the conformation of hyaluronan, a model semirigid polyelectrolyte. At high ionic strength, this is completely possible, where the scattered intensity crosses over (when decreasing q) from a q(-1) rod variation to a q(-2) and, where fitting to the "wormlike" chain model gives the backbone, intrinsic, persistence length: L0 = 86.5 A. At low ionic strength, we can safely check that the measured persistence length appears increased by at least the amount predicted by Odijk for the electrostatic contribution, L(e) (approximately kappa(-2), square of the Debye screening length). However, the intensity at the lowest q is not only due to the single chain, since it crosses over from a q(-1) to a q(-4) variation, characteristic of polymer associations.  相似文献   

7.
We use molecular dynamics simulations to investigate centipede-like polymers with stiff charged side chains, end-grafted to a planar wall. The effect of the grafting density and the Bjerrum length on the conformational behaviour of the brush is examined in detail. In addition, we make a comparison of centipede-like polyelectrolyte (CPE) brushes with neutral centipede-like polymer (NCP) and linear polyelectrolyte (LPE) brushes. At weak electrostatic interaction, the main chains of the CPE chains adopt a strongly stretched conformation, and the monomer density profiles of side chains exhibit a clear oscillatory behaviour. With increasing Bjerrum length, the CPE brush undergoes a collapse transition. Compared to the CPE brushes, the counterion condensation effect is stronger for the LPE brushes, regardless of whether the electrostatic interaction is weak or strong and of whether the grafting density is low or high. Additionally, it is shown that the architecture of the grafted chains makes a weak contribution to the counterion condensation at strong electrostatic interaction. We also find that the electrostatic repulsion between charged side chains can enhance the stiffness of the main chains and thus limit the range of movement of the free-end monomers.  相似文献   

8.
Structural elasticity of double-strand DNAs is very important for their biological functions such as DNA-ligand binding and DNA-protein recognition. By all-atom molecular dynamics simulations,we investigated the bending elasticity of DNA with three typical sequences including poly(A)-poly(T)(AA-TT), poly(AT)-poly(TA)(AT-TA), and a generic sequence(GENE). Our calculations indicate that, AA-TT has an apparently larger bending persistence length(P ~63 nm) than GENE(P ~49 nm) and AT-TA(P ~48 nm) while the persistence length of AT-TA is only very slightly smaller than that of GENE, which agrees well with those from existing works. Moreover, through extensive electrostatic calculations, we found that the sequence-dependent bending elasticity is attributed to the sequence-dependent electrostatic bending energy for AA-TT, AT-TA and GENE,which is coupled to their backbone structures. Particularly, the apparently stronger bending stiffness of AA-TT is attributed to its narrower minor groove. Interestingly, for the three DNAs, we predicted the non-electrostatic persistence length of ~17 nm, thus electrostatic interaction makes the major contribution to DNA bending elasticity. The mechanism of electrostatic energy dominating sequence effect in DNA bending elasticity is furtherly illustrated through the electrostatic calculations for a grooved coarse-grained DNA model where minor groove width and other microscopic structural parameters can be artificially adjusted.  相似文献   

9.
We investigate the repulsive electrostatic interactions between a DNA polyelectrolyte and the charged walls of a fluidic nanoslit. The scaling of the DNA coil size with the physical slit height revealed electrostatic depletion regions that reduced the effective slit height. These regions exceeded the Debye screening length of the buffer, λ(D)(buffer), and saturated at ≈ 50 nm when λ(D)(buffer) reached 10 nm. We explain these results by modeling a semiflexible charged rod near a charged wall and the electrostatic screening by the polyelectrolyte. These results demonstrate the surprisingly long range over which a nanofluidic device can exert field-effect control over confined molecules.  相似文献   

10.
我们基于Flory-Huggins理论,建立理论模型研究水合作用与pH调控聚电解质刷的构象转变.理论模型考虑聚电解质链与水分子间的作用(聚电解质链的水合作用)、体系中的静电作用.研究发现,随着水合作用的改变,聚电解质刷出现由溶胀到塌缩的构象转变.由此表明了水合作用可在很大程度调节聚电解质刷的相变.通过分析pH的调控效应我们还发现,在碱性环境中(pH=8),聚电解质链单体的解离度增大,静电排斥会使得聚电解质刷溶胀.由此表明,聚电解质刷内水合作用与静电效应的耦合,将会共同决定聚电解质刷的构象转变特性.理论结果深刻揭示了水合作用的改变,会使得聚电解质刷体系发生相变,pH可在很大程度上改变其相变特性.  相似文献   

11.
We investigate polyelectrolyte brushes in the osmotic regime using both theoretical analysis and molecular dynamics simulation techniques. In the simulations at moderate Bjerrum length, we observe that the brush height varies weakly with grafting density, in contrast to the accepted scaling law, which predicts a brush thickness independent of the grafting density. We show that such behavior can be explained by considering lateral electrostatic effects (within the non-linear Poisson-Boltzmann theory) combined with the coupling between lateral and longitudinal degrees of freedom due to the conserved polymer volume (which are neglected in scaling arguments). We also take the non-linear elasticity of polyelectrolyte chains into consideration, which makes significant effects as chains are almost fully stretched in the osmotic regime. It is shown that all these factors lead to a non-monotonic behavior for the brush height as a function of the grafting density. At large grafting densities, the brush height increases with increasing the grafting density due to the volume constraint. At small grafting densities, we obtain a re-stretching of the chains for decreasing grafting density, which is caused by lateral electrostatic contributions and is controlled by the counterion-condensation process around polyelectrolyte chains. These results are obtained assuming all counterions to be trapped within the brush, which is valid for sufficiently long chains of large charge fraction.Received: 14 May 2003, Published online: 11 November 2003PACS: 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling - 36.20.-r Macromolecules and polymer molecules - 61.20.Qg Structure of associated liquids: electrolytes, molten salts, etc.  相似文献   

12.
The fundamental length scales in semidilute Na-DNA aqueous solutions have been investigated by dielectric spectroscopy. The low- and the high-frequency relaxation modes are studied in detail. The length scale of the high-frequency relaxation mode at high DNA concentrations can be identified with the de Gennes-Pfeuty-Dobrynin correlation length of polyelectrolytes in semidilute solution, whereas at low DNA concentrations and in the low added salt limit the length scale shows an unusual exponent reminiscent of semidilute polyelectrolyte chains with hydrophobic backbone. The length scale of the low-frequency relaxation mode corresponds to a Gaussian chain composed of correlation blobs in the low added salt limit, and to the Odijk-Skolnick-Fixman value of the single chain persistence length in the high added salt limit.  相似文献   

13.
Spherical polyelectrolyte block copolymer micelles were investigated as a function of added NaCl salt concentration using Small-Angle Neutron Scattering (SANS) and Light Scattering (LS). The micelles are formed by the self-association of charged-neutral copolymers made of a long deuterated polyelectrolyte moiety (NaPSSd)251 and a short hydrophobic moiety (PEP)52. In presence of salt, the core shape and the aggregation number of the micelles are not affected. The hydrodynamic radius of the micelle is found to be identical to the radius of the whole micelle deduced from neutron scattering and thus the hydrodynamic radius is a valid measure of the corona thickness. At the lowest salt concentrations investigated the thickness of the corona, Rs, remains essentially constant and a contraction is observed above an added-salt concentration cs of 2×10-2 M where this crossover concentration corresponds to the average ionic strength of the free counterions in the corona. The contraction takes place while maintaining a rod-like behavior of the chains at short scale and obeys to: Rs cs-0.18. The exponent 0.18 suggests an electrostatic persistence length proportional to the Debye screening length.  相似文献   

14.
We analyze solutions of strongly charged chains bridged by linkers such as multivalent ions. The gelation induced by the strong short range electrostatic attractions is dramatically suppressed by the long range electrostatic correlations due to the charge along the non-cross-linked monomers and ions. A modified Debye-Hückel approach of cross-linked clusters of charged chains is used to determine the mean field gelation transition self-consistently. Highly dilute polyelectrolyte solutions tend to segregate macroscopically. Semidilute solutions can form gels if the Bjerrum length l(B) and the distance between neighboring charged monomers along the chain b are both greater than the ion size a.  相似文献   

15.
We investigate polyelectrolyte brushes using both scaling arguments and molecular dynamics simulations. As a main result, we find a novel collapsed brush phase. In this phase, the height of the brush results from a competition between steric repulsion between ions and monomers and an attractive force due to electrostatic correlations. As a result, the monomer density inside the brush is independent of the grafting density and the polymerization index. For small ionic and monomer radii (or for large Bjerrum length) the brush undergoes a first-order phase transition from the osmotic into the collapsed state. Received 26 September 2000  相似文献   

16.
Qing-Hai Hao 《中国物理 B》2021,30(6):68201-068201
It is commonly realized that polydispersity may significantly affect the surface modification properties of polymer brush systems. In light of this, we systematically study morphologies of bidisperse polyelectrolyte brush grafted onto a spherical nanocolloid in the presence of trivalent counterions using molecular dynamics simulations. Via varying polydispersity, grafting density, and solvent selectivity, the effects of electrostatic correlation and excluded volume are focused, and rich phase behaviors of binary mixed polyelectrolyte brush are predicted, including a variety of pinned-patch morphologies at low grafting density and micelle-like structures at high grafting density. To pinpoint the mechanism of surface structure formation, the shape factor of two species of polyelectrolyte chains and the pair correlation function between monomers from different polyelectrolyte ligands are analyzed carefully. Also, electrostatic correlations, manifested as the bridging through trivalent counterions, are examined by identifying four states of trivalent counterions. Our simulation results may be useful for designing smart stimuli-responsive materials based on mixed polyelectrolyte coated surfaces.  相似文献   

17.
We show that the ionic environment plays a critical role in determining the configurational properties of DNA confined in silica nanochannels. The extension of DNA in the nanochannels increases as the ionic strength is reduced, almost tripling over two decades in ionic strength for channels around 100 x 100 nm in dimension. Surprisingly, we find that the variation of the persistence length alone with ionic strength is not enough to explain our results. The effect is due mainly to increasing self-avoidance created by the reduced screening of electrostatic interactions at low ionic strength. To quantify the increase in self-avoidance, we introduce a new parameter into the de Gennes theory: an effective DNA width that gives the increase in the excluded volume due to electrostatic repulsion.  相似文献   

18.
Using simulations and scaling methods, the effect of an electric field on a collapsed polyelectrolyte globule is investigated, where conduction by counterions and the polyelectrolyte itself is taken into account. At a critical field E(*), a nonequilibrium transition occurs at which the polyelectrolyte unfolds and aligns parallel to the external field. E(*) is determined using scaling results for the polarizability of a polyelectrolyte globule and exhibits a dependence on the chain length N, E(*) approximately N(-1/2), which might be useful for electrophoretic separation of charged biopolymers.  相似文献   

19.
We report a nonlocal density functional theory of polyelectrolyte solutions that faithfully accounts for both short- and long-range correlations neglected in a typical mean-field method. It is shown that for systems with strong electrostatic interactions, the long-range correlations are subdued by direct Coulomb attractions, thereby manifesting strong local excluded-volume effects. The theory has also been used to describe the influence of the polyion chain length and small ion valence on charge inversion due to the adsorption of polyelectrolytes at an oppositely charged surface.  相似文献   

20.
We study the properties of polyelectrolyte chains under different solvent conditions, using a variational technique. The free energy and the conformational properties of a polyelectrolyte chain are studied by minimizing the free energy FN, depending on N(N - 1)/2 trial probabilities that characterize the conformation of the chain. The Gaussian approximation is considered for a ring of length 24 < N < 28 and for an open chain of length 50 < N < 200 in poor- and theta-solvent conditions, including a Coulomb repulsion between the monomers. In theta-solvent conditions the blob size is measured and found in agreement with scaling theory, including charge depletion effects, expected for the case of an open chain. In poor-solvent conditions, a globule instability, driven by electrostatic repulsion, is observed. We notice also inhomogeneous behavior of the monomer-monomer correlation function, reminiscence of necklace formation in poor-solvent polyelectrolyte solutions. A global phase diagram in terms of solvent quality and inverse Bjerrum length is presented. Received 7 June 2001 and Received in final form 17 October 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号