首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From the study of the reaction π?p→pFppπ? using a fast proton (pF) trigger device in the CERN Omega spectrometer, we find evidence for two narrow pp states produced mainly in association with a Δ° (1232) and a N° (1520). The statistical significance of each peak is greater than 6 standard deviations. Masses and natural widths of these resonances are respectively M = 2020 ± 3 MeV, Λ1 = 24 ± 12 MeV and M2 = 2204 ± 5 MeV, Λ2 = 16?16+20 MeV. Our data are consistent with a small production of the narrow ~ 1935 MeV resonance already reported. Production cross sections for these new pp resonances are given.  相似文献   

2.
Differential cross sections were measured for 50Ti(p, p) at four angles for Ep = 1.83 to 2.97 MeV, with an overall energy resolution of about 350 eV. Spins, parities and total widths were extracted for 212 levels. An energy region near Ep = 1.37 MeV was also examined in order to study the analogue of the ground state of 5Ti. Coulomb energies and spectroscopic factors were determined for the analogues of the ground and first excited states of 51Ti. The latter analogue was highly fragmented. The s-wave spacing and width distributions were analyzed and the number of missing levels estimated. The s12 and p12 proton strength functions were determined.  相似文献   

3.
Differential cross sections for neutrons scattered from 11B have been measured for 2.2 MeV < En < 4.5 MeV. The differential cross section σ(θ) is fitted reasonably well by R-matrix parameters for broad states in 12B with assignments 1 ? and (1) + at excitation energies Ex = 5.8 and 6.8 MeV respectively. The broad 1 ? state has not been previously observed and is believed to be the 1 ? member of the 1p32?11d52 particle-hole multiplet predicted to exist by earlier shell model calculations. Its existence completes the identification of all of the levels of this multiplet (3 ?, 2 ?, 4 ?, 1 ?). The broad (1)+ level at Ex = 6.8 MeV has not been previously observed. States at excitation energies Ex = 5.61, 5.73 and 6.6 MeV have been assigned spins and parities of 3+, 3? and (1)+ respectively. These states had previously been assigned spins of 2, 3 and ≧ 1 respectively. Work on T = 1 states in 12C1 has been compared with the present work.  相似文献   

4.
Neutron pick-up cross sections and vector analyzing powers have been measured for the reaction 55Mn(d, t)54Mn at 17 MeV. The mixture of p12 to p32 transfer to the low-lying ln = 1 states has been found. Evidence of the f72 hole nature of several strong ln = 3 states above 1 MeV has been obtained.  相似文献   

5.
Using a target prepared by on-line isotope separation, thermal neutron capture in 84Rb (Iπ = 2?) has been shown to induce proton emission to the ground state (0+) and first excited state (2+) of 84Kr. The branching ratio was measured as Γp(0+)Γp(2+) = 4.7 ± 0.7, favouring a 32? assignment of the capturing state without excluding 52?, and the (nth, p) cross section as 12 ± 2 b. The energy available for the process was determined to be 3.45 ± 0.01 MeV, in agreement with other mass data in the region.  相似文献   

6.
7.
Using the 52Cr(t, p)54Cr reaction at a bombarding energy of 15 MeV, excitation energies have been measured for 30 levels up to Ex = 5.583 MeV in 54Cr. Angular distributions were obtained for all but one of these levels; these have been compared with distorted-wave Born approximation (DWBA) calculations to determine the L-transfer (and hence Jπ). The measured cross sections have been compared to the predictions of DWBA calculations that use two-neutron transfer amplitudes from a shell-model calculation with the active neutrons restricted to the (2p32, If52, 2p12) orbitals.  相似文献   

8.
Differential cross sections were measured for 46Ti(p, p) and 46Ti(p, p1) at four angles between Ep = 1.5 and 3.1 MeV, with an overall energy resolution of about 300 eV. Spins, parities, total and partial widths were extracted for 144 resonances. Six analogue states were identified. The s-wave states have expected spacing and width distributions, while the p12 states behave anomalously. The s12, p12 and p32 strength functions were determined.  相似文献   

9.
《Annals of Physics》1985,161(2):337-359
The differential and total cross sections for the nuclear reaction νμ + 12C (g.s) → 12C1 (1+; T = 1, 15.1 MeV) + νμ are investigated for values of 50 ≤ Eνμ ≤ 300 MeV. An effective Hamiltonian for the above nuclear reaction is constructed from the neutrino-quark neutral current weak interaction, by first constructing the neutrino-nucleon neutral current interaction and then using the impulse approximation along with the non-relativistic reduction procedure. The Weinberg-Salam model is the basis of the calculations. Detailed expressions for the differential cross sections are derived including the nucleon momentum-dependent terms. The numerical results are obtained using the general 1p-shell wavefunctions of Cohen and Kurath. The sensitivity of the total cross sections to the nuclear models and to the Weinberg angle is studied. The corresponding anti-neutrino reaction is also investigated. The ratio R = Tνμ − σTνμ)Tνμ + σTνμ) is found to be independent of the nuclear wavefunctions but very sensitive to the Weinberg angle. Thus this observable can be used to determine the free parameter θw in a nuclear reaction, thereby complementing the studies involving free nucleons. The recoil polarization of the final nucleus 12C1(1+; T = 1, 15.1 MeV) is also studied and its importance is pointed out.  相似文献   

10.
The reaction π?p → (pn)ps, where ps is a slow proton, was measured at 12 GeV/c incident momentum with the CERN-OMEGA spectrometer. Both antiproton and proton were identified uniquely by electronics information. We obtained 1844 events with four-momentum Transfer squared in the range 0.13 ? |t| ? 0.33 GeV2 and with invariant masses M(pn) up to 2.5 GeV. The corresponding cross section in this t range is determined to be σ = 4 ± 0.4 μb. Extrapolating the differential cross section over the whole t range assuming dσ/dt ≈ exp(5.3t) we estimate a cross section of σ = 9.3 ± 2.0 μb. Comparison with data on π?p → (pp)ns (where ns is a slow neutron) in the same t range shows that the (pn)psand (pp)ns cross sections have approximately the same magnitude.  相似文献   

11.
New 100 GeV/cpp data are used to find moments of the difference between the pp and pp topological cross sections. The mean multiplicity for annihilations at 100 GeV/c is estimated to be 9.06 ± 0.56, and the value of the quantity 〈n〉/D to be 2.75 ± 0.33. It is shown that Rn = {σn(pp) ? σn(pp)}/σn(pp) appears at 100 GeV/c to have acquired an asymptotic form, Rn = s?αβn, with α and β constant.  相似文献   

12.
The cross section for the 15N(p, α0)12C reaction has been measured at θlab = 135° over the proton energy range 93 ≦ Ep ≦ 418 keV. The results are in good agreement with the less precise but much earlier measurements of Schardt, Fowler and Lauritsen (1952). An analysis of the present data in terms of a two-level calculation including the 338 keV (1?) and 1028 keV (1?) resonances determines a zero-energy intercept for the astrophysical S-factor of S(0) = 78 ± 6 MeV · b.  相似文献   

13.
The results of high-resolution studies of the 91Zr(d, p) reaction at Ed = 12 MeV and the 90Zr(t, p) reaction at Et = 11.85 MeV are presented. Absolute cross sections have been measured for both reactions and (d, p) spectroscopic factors determined. A comparison of these results with earlier data has been made, and although many of the previous assignments have been confirmed, many new features concerning the structure of 92Zr have been discovered. Shell-model calculations have been performed for 91Zr and 92Zr using a neutron space which includes the 2d52, 3s12, 2d32, 1g72 and 1h112 orbits and a proton space comprising the 1g92 and 2p12 orbits. Realistic proton-neutron and neutron-neutron interactions based on the Sussex matrix elements were used in the calculations. Spectroscopic factors have been calculated for the 90Zr(d, p) and 91Zr(d, p) reactions and cross sections calculated for the 90Zr(t, p) reaction. In general, good agreement between the theoretical and the experimental results has been obtained.  相似文献   

14.
Excitation functions of the capture reaction 12C(p, γ0)13N have been obtained at θγ = 0° and 90° and Ep = 150–2500 keV. The results can be explained if a direct radiative capture process, E1(s and d → p), to the ground state in 13N is included in the analysis in addition to the two well-known resonances in this beam energy range [Ep = 457(12+) and 1699 (32?) keV]. The direct capture component is enhanced through interference effects with the two resonance amplitudes. From the observed direct capture cross section, a spectroscopic factor of C2S(l = 1) = 0.49 ± 0.15 has been deduced for the 12? ground state in 13N. Excitation functions for the reaction 12C(p,γ1p1)12C have been obtained at θγ = 0° and 90° and Ep = 610–2700 keV. Away from the 1699 keV resonance the capture γ-ray yield is dominated by the direct capture process E1 (p → s) to the 2366 (12+) keV unbound state. Above Ep = 1 MeV, the observed excitation functions are well reproduced by the direct capture theory to unbound states (bremsstrahlung theory). Below Ep = 1 MeV, i.e., Ep → 457 keV, the theory diverges in contrast to observation. This discrepancy is well known in bremsstrahlung theory as the “infrared problem”. From the observed direct capture cross sections at Ep ? 1 MeV, a spectroscopic factor of C2S(l = 0) = 1.02 ± 0.15 has been found for the 2366 (12+) keV unbound state. A search for direct capture transitions to the 3512 (32?)and 3547 (52+) keV unbound states resulted in upper limits of C2S(l = 1) ≦ 0.5 and C2S(l = 2) ? 1.0, respectively. The results are compared with available stripping data as well as shell-model calculations. The astrophysical aspect of the 12C(p, γ0)13N reaction also is discussed.  相似文献   

15.
The decay K+ → e+υγ has been investigated. For the structure-dependent part with positive γ-helicity (SD+) the branching ratio Γ(SD+)Γ(Kμ2) = (2.33 ± 0.42) × 10?5 is obtained from 51 ± 3 events observed in the kinematical region Ee ? 235 MeV, Eγ > 48 MeV and θeγ > 140°. For the corresponding part with negative γ-helicity we obtain an upper limit Γ(SD?)/Γ(SD+) < 11 (90% CL) from the sample of electrons with energies 220 MeV ? Ee < 230 MeV and with no γ in the backward direction. This upper limit implies that the ratio of structure-dependent axial vector amplitudes lies outside the region ?1.8 < aKυK < ?0.54.For the decay K+e+ννν the limit Γ(K+e+ννν)/Γ(Ke2) < 3.8 90% confidence level) was found.  相似文献   

16.
The cross section, vector analyzing power, and proton polarization have been measured for the ln = 0 reaction 116Sn(d, p)117Sn(g.s.) at 8.22 MeV. In addition, cross section and analyzing power data have been obtained at 8.22 MeV for 116Sn(d, d)116Sn and for 116Sn(d, p)117Sn leading to excited states of 117Sn at 0.159, 0.317, 1.020, 1.179, 1.308 and 1.497 MeV. The cross section and analyzing power for 117Sn(p,p)Sn and for 117Sn(p, d)116Sn leading to the 1.294 MeV state of 116Sn have also been measured at 12.91 MeV. The data for 116Sn(d, p)117Sn(g.s.) have been used to separate the contributions to the analyzing power arising from spin-dependent forces in the proton and deuteron channels. A similar analysis is presented for an ln = 0 90Zr(d, p)91Zr transition at 11 MeV. Optical-model analyses have been performed for the elastic scattering data. The reaction data have been compared with distorted-wave calculations in order to investigate the validity of various deuteron potentials, as well as to extract spectroscopic information.  相似文献   

17.
Angular distributions of cross sections and analyzing powers have been measured for 18O(p, p)18O and 18O(p, p1)18O1 (1.98 MeV) in 25 keV intervals for proton energies between 3.8 and 6.1 MeV. A phase-shift analysis of the elastic scattering data was carried out, yielding resonance parameters for 16 levels in 19F in the excitation energy region 11.6–13.8 MeV. The results generally are in good agreement with previous work. On the basis of spin, parity, excitation energy and a comparison of reduced proton widths with reduced neutron widths of levels in 19O, an assignment of T = 32 could be made to at least five of the levels, including the analog of the broad 32+ level in 19O at 5.45 MeV. A Legendre-polynomial analysis of the inelastic scattering data suggests that the cross section for proton energies between 5.0 and 5.5 MeV is dominated by the broad 32+ resonance at Ep = 5.15 MeV.  相似文献   

18.
The intrinsic structure of 168Tm has been studied using the (3He, d) and (α, t) proton stripping reactions as well as the (d, t) and (3He, α) neutron pick-up reactions. The beams of 24 MeV 3He particles, 25 MeV α-particles and 12 MeV deuterons were obtained from the McMaster tandem Van de Graaff accelerator. The reaction products were analyzed with an Enge-type magnetic spectrograph and detected with photographic emulsions. The spectra have been interpreted in terms of the coupling of an odd proton and an odd neutron, each moving independently in a spheroidal potential, which gives rise to intrinsic two-quasiparticle states with K = ¦Ω1±Ω2¦. The identification of the intrinsic states was made by comparing the experimental cross-section patterns with those predicted with the aid of Coriolis coupling and distorted-wave Born approximation (DWBA) calculations. Rotational bands superimposed on the Kπ = 3+ and Kπ = 4+, {72+ [633]n±12+ [411]p} configurations, the first of which is the ground state, ha been observed in the spectra of all four reactions. New assignments have been made for configurations resulting from coupling the 12? [541], 72+ [404], 54+ [402] and 12? [530] p to the 72+ [633] neutron state. The neutron pick-up measurements confirmed the earlier assignments based on (d, t) reaction studies and suggested tentative assignments for the {12+ [400]n±12+ [411]p} and {32+ [402]n±12+ [411]p}  相似文献   

19.
The forward cross section at Ep=600 MeV is calculated for the reaction p+(N, Z)→(N+1, Z)1+ using a single-nucleon mechanism, distorted pion and proton wave functions and bound-state nucleon wave functions with realistic asymptotic behavior. Good agreement with experiment is found for 4He, 12C, and 14N.  相似文献   

20.
Total cross sections for the 16O(p, α0)13N reaction have been measured by observation of the positron decay of the residual 13N nuclei. These cross sections, covering the c.m. energy range 5.4 ≦ E ≦ 9.9 MeV, allow determination of reaction rates of astrophysical interest at temperatures in the neighborhood of 4 × 109°K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号