首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nuclear quadrupole hyperfine splittings of Pr3+ in LaF3 have been measured for the ground electronic state using a RF optical resonance technique. A hamiltonian H = P[(I2z? 13I(I+1) + (η/6)(I2+?I2-)] was fitted to the data with zP=4.185 ± 0.003 MHzandη = 0.105 ± 0.010. Linewidths of 180 kHz were observed.  相似文献   

2.
The first observation of the ESR spectra of Mn2+, entering substitutionally for Fe2+ in the Van Vleck paramagnet FeS2 (polycrystals), is reported. The data from 5 to 295 K fits the spin-Hamiltonian hs = gβH·S + [S2z?13 S(S + 1)] + AS·I, with g = 2.000 ± 0.001, A/β = ?95.0 ± 0.5 Oe and D/β varying from 50 Oe (5K) to 59 Oe (295 K). The temperature dependence of D can be described in terms of a single phonon-mode with frequency ? 145 cm?1.  相似文献   

3.
The magnetic specific heat of ferrous formate dihydrate is analysed on the basis of a model, SA = 12 and SB = 2. The experimental result turns out to be well explained by the introduction of a large S4z-term for B site ions.  相似文献   

4.
The X-band EPR spectrum of SrCl2:V has been measured at liquid nitrogen temperature. A signal associated with V2+ in a site of trigonal symmetry is observed. The EPR data have been explained using the spin hamiltonian = μβHg?S + D[S2z ? 13S(SH)] + SA?I, with D ? hv, g = 1.957 ± 0.004, g6 = 1.954 ± 0.004, A = 230 ± 5 MHz, A6 = 235 ± 5 MHz. This V2+ defect is similar to those previously reported in fluoride crystals with the fluorite structure.  相似文献   

5.
A frequency tunable infrared source has been constructed by using the (Ar-laser) - (dyelaser) difference frequency method developed by Pine and applied to the observation of the overtone bands of PH3 3ν2 ← 0 and 4ν2ν2 in the 3.4 μm region and 4ν2 ← 0 in the 1.6-μm region. A Stark modulation method was used to increase the sensitivity of detection. For transitions which were well modulated, the minimum detectable absorption coefficient was estimated to be ~3 × 10?7 cm?1 using a 3-m cell. Emphasis was placed on the observation of the A1-A2 splitting for K = 3n rotational levels. For the 3ν2 state splittings were observed for K = 3, 6, and 9 because PH3 is a very nearly spherical top in this state. The magnitude and the J dependence of the observed K = 3n splittings have been analyzed by using a normal symmetric rotor Hamiltonian and a centrifugal distortion term of the form τxxxz[(J+3 + J?3)Jz + Jz(J+3 + J?3)]4.  相似文献   

6.
The measurement of the 2S12 → 2P12 energy transition in muonic helium is presented. The energy difference S1 is found to be Sexp1 = 1381.3±0.5 meV. This result agrees with the expected value S?1 = 1381.2±0.3 meV obtained assuming the previously measured value for the 2S12 → 2P32 energy difference.  相似文献   

7.
The fine structures of the (ν1 + ν2) and (ν2 + ν3) combination bands of ozone in the 5.7-μm region have been recorded and analyzed. The two vibrational states are coupled through Coriolis and second-order distortion terms. The interaction has been treated by the numerical diagonalization of the secular determinant for the two coupled states. With the centrifugal distortion parameters fixed to the ground state values, the following constants have been obtained: ν1 + ν2 = 1796.266, A110 = 3.6104, B110 = 0.44145, C1110 = 0.39029, ν2 + ν3 = 1726.526, A011 = 3.5537, B011 = 0.43982, C1011 = 0.38844, Y13 = ?0.466, and X13 = ?0.010 cm?1. In addition, the following anharmonic constants have been obtained: x12 = ?7.821 and x23 = ?16.494 cm?1. The value of the dipole moment ratio, R = 〈011|μz|0〉〈110|μx|0〉, is 1.30 ± 0.10.  相似文献   

8.
Departure from stoichiometry in vapor grown FeCr2S4 was studied using Mössbauer spectroscopy. The paramagnetic Mössbauer spectra give evidence of two singlets and two doublets which correspond respectively to A site Fe2+ ? Fe3+, FeII in Td symmetry and in symmetry lower than Td. The following ionic distribution has been deduced:
(Fe2+1?yFe3+y)|Cr3+2?xx|S4?zz
Compounds in the system Fe1+xCr2?xS4 have been studied for 0 ? x ? 0.1. The spectra are solved assuming FeII in A site with Td symmetry, A site FeII with lower symmetry and B site Fe3+. No Fe2+ appears in B site. These features are discussed in terms of schematic band structures implying single electron narrow bands. The non-affinity of Fe2+ for B sites of iron thiochromites is discussed in relation with B site Cr2+ level.  相似文献   

9.
Discharges through mixtures of helium and neon show two band groups near 4250 and 4100 Å as first observed by Druyvesteyn. These bands, assigned to the HeNe+ ion by Tanaka, Yoshino, and Freeman, have been studied under high resolution and have been fairly completely analyzed. The upper state of the transition is a very weakly bound state resulting from He+(2S) + Ne(1S0). There are two lower states resulting from the two components of Ne+(2P) + He(1S0). The upper of these two (2Π12) is also very weakly bound while the lower of the two, the 2Σ+ ground state, has a dissociation energy of 0.69 eV and an re value of 1.30 Å. All bands in both band groups show four branches designated Rff, Qef, Qfe, and Pee. From their analysis the rotational constants in the various vibrational levels of the three electronic states have been determined. While no spin splitting in the B2Σ+ state has been found the ground state X2Σ shows a very large spin splitting and the A22Π12 state a very large Ω-type doubling. The vibrational numberings in all these states were established by the study of the spectrum of 3HeNe+. At the same time the hyperfine structure observed in all lines of 3HeNe+ confirmed the nature of the upper state B2Σ+ as resulting from He+ + Ne, i.e., by charge exchange from the ground state. The 2Π12 component of the 2Π state has not been observed, presumably because of low intensity.  相似文献   

10.
The nucleus 11B has been studied over the excitation energy range from 8.5 MeV to 21.5 MeV with the 9Be(3He, p)11B / reaction at / E3He = 38 MeV. The analogs of the parent states in 11Be have been located at 12.56, 12.92, 14.40, 16.44, 17.69, 18.0, 19.15 and 21.27 MeV. A complementary measurement with the 9Be(α, d)11B reaction at Eα = 48 MeV demonstrates that the 16.44, 17.69, 18.0 and 19.15 MeV resonances have rather pure isospin Tf = 32. The 14.40 MeV state is a strongly isospin-mixed analog of the 52+1.78 MeV state in 11Be. It is argued that spin S = 1 transfer is involved in the excitation of the 16.44 MeV state and its 3.887 MeV parent in 11Be in a two-step stripping process. The Tf = 12 states and the lowest three Tf = 32 states are compared with the predictions of DWBA utilizing shell-model form factors. It is concluded that the Tf = 12 strength is more strongly fragmented than is implied by the calculations of Teeters and Kurath.  相似文献   

11.
The transverse spin pair correlation function pxn=<SxmSxm+n>=<SxmSxm+n> is calculated exactly in the thermodynamic limit of the system described by the one-dimensional, isotropic, spin-12, XY Hamiltonian
H=?2Jl=1N(SxlSxl+1+SylSyl+1)
. It is found that at absolute zero temperature (T = 0), the correlation function ρxn for n ≥ 0 is given by
ρx2p=142π2pΠj=1p?14j24j2?12p?2jif n=2p
,
ρx2p+1142π2p+1Πj=1p4j24j2?12p+2jif n=2p+1
, where the plus sign applies when J is positive and the minus sign applies when J is negative. From these the asymptotic behavior as n → ∞ of |?xn| at T = 0 is derived to be xn| ~ an with a = 0.147088?. For finite temperatures, ρxn is calculated numerically. By using the results for ?xn, the transverse inverse correlation length and the wavenumber dependent transverse spin pair correlation function are also calculated exactly.  相似文献   

12.
Vibrational and rotational analyses of the near-infrared bands of S2 lying in the region 7440–8085 Å are reported. They form a new band system involving a 3Πgi-3Σu+ transition and arise from the same initial 3Πgi state of the 3Πgi-3Δui band system reported earlier. The analyses of the bands of this system due to the isotopic molecules 32S34S and 34S2 are also reported.  相似文献   

13.
We examine the Hamiltonian
H = H00u08u8+A Sαα+B d8αβSαβ
, where uo, u8 belong to (3,3)+(3,3) and Sαα, Sαβ belong to (8,8), following a purely algebraic approach due to Michel and Radicati and obtain B/A = 2√3 if ε8/ε0 = ?√2.  相似文献   

14.
Using the re-equilibration kinetic method the chemical diffusion coefficient in nonstoichiometric chromium sesquisulfide, Cr2+yS3, has been determined as a function of temperature (1073–1373 K) and sulphur vapour pressure (10?104 Pa). It has been found that this coefficient is independent of sulphur pressure and can be described by the following empirical equation: D?Cr2+yS3=50.86 exp(-39070 cal/mole/RT) (cm2s?1). It has been shown that the mobility of the point defects inCr2+yS3 is independent of their concentration and that the self-diffusion coefficient of chromium in this sulfide has the following function of temperature and sulphur pressure: DCr=2.706×102P?14.85S2exp(-56070 cal/mole/RT). (cm2s?1).  相似文献   

15.
The E-B (0g+-0u+) band system of Br2 has been investigated at Doppler-limited resolution using polarization labeling spectroscopy. Merged E state data for the three naturally occurring isotopes in the range vE = 0–16, expressed in terms of the constants for 79Br2, are (in cm?1) Y0,0 = 49 777.962(54), Y1,0 = 150.834(22), Y2,0 = ?0.4182(28), Y3,0 = 6.6(11) × 10?4, Y0,1 = 4.1876(28) × 10?2, Y1,1 = ?1.607(16) × 10?4, and Y0,2 = 1.39(39) × 10?8. The bond distance is re = 3.194 A?, and the diabatic dissociation energy to Br+(3P2) + Br?(1S0) is 34 700 cm?1.  相似文献   

16.
The γ-decay of deep-hole states in 101, 105, 107Pd was studied via the (3He, αγ) reaction at E3he = 70 MeV and supplemented by data from 112, 118Sn targets to investigate the deep-hole spreading mechanism. The γ-decay pattern for the g92 deep-hole state shows a strong dependence on the spreading width: if the deep-hole state is observed as a sharp peak, it mainly decays to the low-lying 72+ state by a spin-flip M1 transition with a large M1-E2 mixing ratio; if the deep-hole state is observed as a broad bump, it decays statistically indicating the complete spreading of the hole strength over the underlying states; if the deep-hole state is observed with a structure intermediate between a sharp peak and broad bump, its γ-decay shows both decay patterns.A sharp peak at Ex = 2.396 MeV in 101Pd which carries a large fraction of the g92 hole strength (C2S = 2.0) was found to be a single state having a width of less than 2.5 keV.For the spin-flip M1 transition the destructive interference between the g92 component and the coupled components of the deep-hole state was found in heavily spread states.A quasiparticle-plus-rotor (QPR) model was applied to calculate the fragmentation in the doorway stage for the g92 neutron deep-hole state in the Pd isotopes. A reasonable agreement between the calculation and the experimental results was obtained for the strength fragmentation, for the nucleus 101Pd. However, the large M1-E2 mixing ratio experimentally observed was not reproduced.  相似文献   

17.
The branching ratios are calculated for 11ΛB decay to the 11C ground and excited states below 8 MeV for two possible spin values of 11ΛB. It is found that the decay rate to the 11C state at E = 6.48 MeV is comparable in magnitude to that leading to the 11C ground state if J(11ΛB) = 52 is assumed. This result, unlike the branching ratios calculated for the J(11ΛB) = 72 case, is in accord with experiment and lends support to the assumption that J = 52 holds for 11ΛB. The necessity of the reinterpretation of some of the so-called 13ΛC events in terms of 11ΛB → π? + 11C1 is indicated.  相似文献   

18.
The gas phase infrared spectra of monoisotopic H3Si35Cl and H3Si37Cl have been studied in the ν1ν4 region near 2200 cm?1 with a resolution of 0.012 and 0.04 cm?1, respectively, and rotational fine structure for ΔJ = ±1 branches has been resolved. In addition, some information on ν3 + ν4 of H3Si35Cl near 2750 cm?1 has been obtained. ν1 and ν4 are weakly coupled by Coriolis x, y resonance, BΩ14ζ14 ~ 2 × 10?3cm?1, only the upper states K′ = 2, l = 0 and K′ = 1, l = ?1 being substantially affected. Local perturbation due to rotational l(±1, ±1)-type resonance with ν3 + ν5+1 + ν6+1 and ν3 + ν5+1 + ν6?1 is revealed in the ΔK = +1 and ?1 branches, respectively. From a fit of the experimental line positions, standard deviations of 1.4 and 3.8 × 10?3 cm?1, respectively, to a model with five interacting levels conventional excited state parameters and interaction constants have been obtained. In H3Si35ClH3Si37Cl the fundamentals are ν1, 2201.94380(15)2201.9345(7) and ν4, 2209.63862(8)2209.6254(2) cm?1, respectively. Q branches of the “hot” band (ν3 + ν4) ? ν3 and of ν4 of the 29Si and 30Si species have been detected.  相似文献   

19.
The A 2Σ+-X 2Π emission spectrum of HCl+ has been measured and analyzed for four isotopic combinations. These analyses extend previous work and provide rotational constants for the v = 0–2 levels of the ground state and for the v = 0–9 levels of the excited state. RKR potentials have been determined for both states, although the upper state could not be fitted precisely to such a model. Calculated relative intensities based on these potentials demonstrated that the electronic transition moment must change rapidly with lower state vibrational quantum number. Although considerable caution should be exercised in applying the concept of equilibrium constants to the A 2Σ+ state, the following are the best estimates of these constants (in cm?1) for the X 2Π state of H35Cl+: Be = 9.9406, ωe = 2673.7, Ae = ? 643.7, and re = 1.315 A?. For the A 2Σ+ state of H35Cl: Te = 28 628.08, Be ~ 7.505, ωe ~ 1606.5, and re = 1.514 A?.  相似文献   

20.
A weak emission spectrum of I2 near 2770 Å is reanalyzed and found to to minate on the A(1u3Π) state. The assigned bands span v″ levels 5–19 and v′ levels 0–8. The new assignment is corroborated by isotope shifts, band profile simulations, and Franck-Condon calculations. The excited state is an ion-pair state, probably the 1g state which tends toward I?(1S) + I+(3P1). In combination with other results for the A state, the analysis yields the following spectroscopic constants: Te = 10 907 cm?1, De = 1640 cm?1, ωe = 95 cm?1, R″e = 3.06 A?; Te = 47 559.1 cm?1, ωe = 106.60 cm?1, R′e = 3.53 A?.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号