首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Size dependency of the relaxation time T1 was measured for laser-polarized 129Xe gas encapsulated in different sized cavities made by glass bulbs or gelatin capsules. The use of laser-polarized gas enhances the sensitivity a great deal, making it possible to measure the longer 129Xe relaxation time in quite a short time. The size dependency is analyzed on the basis of the kinetic theory of gases and a relationship is derived in which the relaxation rate is connected with the square inverse of the diameter of the cavity. Such an analysis provides a novel parameter which denotes the wall effect on the relaxation rate when a gas molecule collides with the surface once in a second. The relaxation time of 129Xe gas is also dependent on the material which forms the cavity. This dependency is large and the relaxation study using polarized 129Xe gas is expected to offer important information about the state of the matter of the cavity wall.  相似文献   

2.
Little is known about129Xe NMR spectral features and spin-lattice relaxation behavior, and the dynamics of xenon atoms, for xenon adsorbed on solid surfaces at cryogenic temperatures (≤77 K), where exchange with gas-phase atoms is not a significant complication. We report129Xe NMR experiments at 9,4 T that provide such information for xenon adsorbed onto the hydroxylated surface of a number of microporous silica samples at 77 K. A convenient design for these cryogenic experiments is described. Dynamics of surface-adsorbed xenon atoms on the time scale of seconds can be observed by129Xe NMR hole-burning experiments; much slower dynamics occurring over hours and days are evidenced from changes with time of the129Xe NMR chemical shifts. The peak maxima occur in the region ca. 180–316 ppm, considerably downfield of129Xe shifts previously reported on surfaces at higher temperatures, and closer to the shift of xenon bulk solid (316.4±1 ppm). The129Xe spin-lattice relaxation timesT 1 range over five orders of magnitude; possible explanations for both nonexponential relaxation behavior and extremely shortT 1 values (35 ms) are discussed. Preliminary131Xe and1H NMR results are presented, as well as a method for greatly increasing the sensitivity of129Xe NMR detection at low temperatures by using closely-spaced trains of rf pulses.  相似文献   

3.
Size dependency of the relaxation time T(1) was measured for laser-polarized (129)Xe gas encapsulated in different sized cavities made by glass bulbs or gelatin capsules. The use of laser-polarized gas enhances the sensitivity a great deal, making it possible to measure the longer (129)Xe relaxation time in quite a short time. The size dependency is analyzed on the basis of the kinetic theory of gases and a relationship is derived in which the relaxation rate is connected with the square inverse of the diameter of the cavity. Such an analysis provides a novel parameter which denotes the wall effect on the relaxation rate when a gas molecule collides with the surface once in a second. The relaxation time of (129)Xe gas is also dependent on the material which forms the cavity. This dependency is large and the relaxation study using polarized (129)Xe gas is expected to offer important information about the state of the matter of the cavity wall.  相似文献   

4.
We have investigated the transfer of polarization from 129Xe to solute protons in aqueous solutions to determine the feasibility of using hyperpolarized xenon to enhance 1H sensitivity in aqueous systems at or near room temperatures. Several solutes, each of different molecular weight, were dissolved in deuterium oxide and although large xenon polarizations were created, no significant proton signal enhancement was detected in -tyrosine, α-cyclodextrin, β-cyclodextrin, apomyoglobin, or myoglobin. Solute-induced enhancement of the 129Xe spin–lattice relaxation rate was observed and depended on the size and structure of the solute molecule. The significant increase of the apparent spin–lattice relaxation rate of the solution phase 129Xe by α-cyclodextrin and apomyoglobin indicates efficient cross relaxation. The slow relaxation of xenon in β-cyclodextrin and -tyrosine indicates weak coupling and inefficient cross relaxation. Despite the apparent cross-relaxation effects, all attempts to detect the proton enhancement directly were unsuccessful. Spin–lattice relaxation rates were also measured for Boltzmann 129Xe in myoglobin. The cross-relaxation rates were determined from changes in 129Xe relaxation rates in the α-cyclodextrin and myoglobin solutions. These cross-relaxation rates were then used to model 1H signal gains for a range of 129Xe to 1H spin population ratios. These models suggest that in spite of very large 129Xe polarizations, the 1H gains will be less than 10% and often substantially smaller. In particular, dramatic 1H signal enhancements in lung tissue signals are unlikely.  相似文献   

5.
We observed the NMR signal of low-pressure gas 129Xe by laser enhanced method on an MSL-400 NMR spectrometer and measured nuclear spin relaxations of 129Xe gas at various temperatures. The relaxation rate constant of 129Xe-133Cs spin exchange was obtained as (6.8±0.5)×10-16cm-3s-1.  相似文献   

6.
We studied the free precession of the nuclear magnetization of hyperpolarized 129Xe gas in external magnetic fields as low as B0 = 4.5 nT, using SQUIDs as magnetic flux detectors. The transverse relaxation was mainly caused by the restricted diffusion of 129Xe in the presence of ambient magnetic field gradients. Its pressure dependence was measured in the range from 30 mbar to 850 mbar and compared quantitatively to theory. Motional narrowing was observed at low pressure, yielding transverse relaxation times of up to 8000 s.  相似文献   

7.
Intermolecular 129Xe–1H nuclear Overhauser effects and 129Xe longitudinal relaxation time measurements were used to demonstrate that the dipole–dipole coupling is the dominant relaxation mechanism for 129Xe in water, at room temperature. 129Xe–1H cross-relaxation rates were derived to be ςXeH 3.2 ± 0.3 × 10−3 s−1, independent of xenon pressure (in the range of 1–10 bar) and of the presence of oxygen. Corresponding xenon–proton internuclear distances were calculated to be 2.69 ± 0.12 Å. Using the magnitude of the dipole–dipole coupling and the spin density ratio between dissolved xenon and bulk water, it is estimated that 129Xe–1H spin polarization-induced nuclear Overhauser effects would yield little net proton signal enhancement in water.  相似文献   

8.
Radiation damping is generally observed when a sample with high spin concentration and high gyromagnetic ratio is placed in a high magnetic field. However, we firstly observed liquid-state129Xe radiation damping with laser-enhanced nuclear polarization at low magnetic field in a flow system in which the polarization enhancement factor for the liquid-state129Xe was estimated to be 5000, and, furthermore, theoretically simulated the envelopes of the129Xe free induction decay and spectral lineshape in the presence of both relaxation and radiation damping with different pulse flip angles and ratios ofT 2 * /T rd. The radiation damping time constantT rd of 5 ms was derived on the basis of the simulations. The reasons of depolarization and the further possible improvements were also discussed.  相似文献   

9.
In magnetic resonance imaging with hyperpolarized (HP) noble gases, data is often acquired during prolonged gas delivery from a storage reservoir. However, little is known about the extent to which relaxation within the reservoir will limit the useful acquisition time. For quantitative characterization, 129Xe relaxation was studied in a bag made of polyvinyl fluoride (Tedlar). Particular emphasis was on wall relaxation, as this mechanism is expected to dominate. The HP 129Xe magnetization dynamics in the deflating bag were accurately described by a model assuming dissolution of Xe in the polymer matrix and dipolar relaxation with neighboring nuclear spins. In particular, the wall relaxation rate changed linearly with the surface-to-volume ratio and exhibited a relaxivity of κ=0.392±0.008 cm/h, which is in reasonable agreement with κ=0.331±0.051 cm/h measured in a static Tedlar bag. Estimates for the bulk gas-phase 129Xe relaxation yielded T1bulk=2.55±0.22 h, which is dominated by intrinsic Xe-Xe relaxation, with small additional contributions from magnetic field inhomogeneities and oxygen-induced relaxation. Calculations based on these findings indicate that relaxation may limit HP 129Xe experiments when slow gas delivery rates are employed as, for example, in mouse imaging or vascular infusion experiments.  相似文献   

10.
Matthias Koch 《Surface science》2006,600(18):3586-3589
Nuclear magnetic resonance (NMR) is performed on monolayer (ML) amounts of adsorbed 129Xe on a single crystal substrate. The inherently low sensitivity of NMR is overcome by using highly nuclear spin polarized 129Xe that has been produced by optical pumping. A polarization of 0.8 is regularly achieved which is 105 times the thermal (Boltzmann) polarization. The experiments are performed with a constant flux of xenon atoms impinging on the surface, typically 4 ML/s. The chemical shift (σ) of 129Xe is highly sensitive to the Xe local environment. We measured profoundly different shifts for the Xe bulk, for the surface of the Xe bulk, and for Xe on CO/Ir(1 1 1). The growth of the bulk is seen in a phase transition like change of σ as a function of temperature at constant Xe flux. At temperatures where no bulk forms at a flux of 4 ML/s, the xenon exchange rate was measured by a spin inversion/recovery method. The exchange time of Xe is found to be 0.24 s at 63.4 K and 64.4 K and somewhat longer at 61.2 K. An analysis is given involving the desorption out of the second layer and fast mixing of first and second layer atoms at these temperatures.  相似文献   

11.
The spin-lattice relaxation time of the129Xe nucleus of natural xenon gas dissolved in various isotropic liquids, acetonitrile, benzene, carbon tetrachloride and cyclohexane, was studied as a function of temperature at the magnetic fields of 9.4 and 4.7 T. The utilization of hydrogenated and deuterated benzene and cyclohexane reveals that the intermolecular129Xe-1H dipole-dipole interaction constitutes an important relaxation mechanism in hydrogenated solvents. According to this interpretation the interaction is rather strongly temperature-dependent, and increases with increasing temperature. An important observation of an experimental nature is also noted, namely convective flow present in non-spinning sample tubes at elevated temperatures disturbs inversion-recovery measurements and leads to erroneous and unreliable relaxation time values.  相似文献   

12.
A 129Xe comagnetometer designed for the measurement of neutron electric dipole moment (nEDM) as precisely as 1 × 10?27e cm is presented. Highly nuclear spin polarized 129Xe are introduced into an EDM cell where the 129Xe spin precession is detected by means of the two-photon transition. The geometric phase effect (GPE) which generates the false nEDM was quantitatively discussed and the systematic error of nEDM from the GPE was estimated considering the buffer-gas suppression due to Xe atomic collisions. Research and development are in progress to construct the 129Xe comagnetometer with a field sensitivity of 0.3 fT. At present, about 70 % nuclear spin polarized 129Xe atoms have been obtained in a spin exchange opitial pumping cell, that are in the process of being transferred into the EDM cell via a cold trap.  相似文献   

13.
A technique for continuous production of solutions containing hyperpolarized 129Xe is explored for MRI applications. The method is based on hollow fiber membranes which inhibit the formation of foams and bubbles. A systematic analysis of various carrier agents for hyperpolarized 129Xe has been carried out, which are applicable as contrast agents for in vivo MRI. The image quality of different hyperpolarized Xe solutions is compared and MRI results obtained in a clinical as well as in a nonclinical MRI setting are provided. Moreover, we demonstrate the application of 129Xe contrast agents produced with our dissolution method for lung MRI by imaging hyperpolarized 129Xe that has been both dissolved in and outgassed from a carrier liquid in a lung phantom, illustrating its potential for the measurement of lung perfusion and ventilation.  相似文献   

14.
We report the experimental results of frequency-selective laser optical pumping and spin exchange of Cs with129Xe and131Xe in a high magnetic field of 11.74 T. Our results show that hyperpolarized129Xe and131Xe nuclear magnetic resonance (NMR) signals exhibit alternating phases when the laser frequency for pumping the cesium atoms is changed, which is explained on the basis of the high-field optical pumping of Cs. We obtain about 3% polarization of the129Xe. The electron-spin polarization of the Cs atoms has been measured to be about 22% with a simple NMR method.  相似文献   

15.
Here we provide a full report on the construction, components, and capabilities of our consortium’s “open-source” large-scale (~ 1 L/h) 129Xe hyperpolarizer for clinical, pre-clinical, and materials NMR/MRI (Nikolaou et al., Proc. Natl. Acad. Sci. USA, 110, 14150 (2013)). The ‘hyperpolarizer’ is automated and built mostly of off-the-shelf components; moreover, it is designed to be cost-effective and installed in both research laboratories and clinical settings with materials costing less than $125,000. The device runs in the xenon-rich regime (up to 1800 Torr Xe in 0.5 L) in either stopped-flow or single-batch mode—making cryo-collection of the hyperpolarized gas unnecessary for many applications. In-cell 129Xe nuclear spin polarization values of ~ 30%–90% have been measured for Xe loadings of ~ 300–1600 Torr. Typical 129Xe polarization build-up and T1 relaxation time constants were ~ 8.5 min and ~ 1.9 h respectively under our spin-exchange optical pumping conditions; such ratios, combined with near-unity Rb electron spin polarizations enabled by the high resonant laser power (up to ~ 200 W), permit such high PXe values to be achieved despite the high in-cell Xe densities. Importantly, most of the polarization is maintained during efficient HP gas transfer to other containers, and ultra-long 129Xe relaxation times (up to nearly 6 h) were observed in Tedlar bags following transport to a clinical 3 T scanner for MR spectroscopy and imaging as a prelude to in vivo experiments. The device has received FDA IND approval for a clinical study of chronic obstructive pulmonary disease subjects. The primary focus of this paper is on the technical/engineering development of the polarizer, with the explicit goals of facilitating the adaptation of design features and operative modes into other laboratories, and of spurring the further advancement of HP-gas MR applications in biomedicine.  相似文献   

16.
Introduction  Bythemethodoflaseropticalpumpingspin exchange ,theNMRsignalfrom 1 2 9Xegascanbegreatlyenhanced[1 ] .Theobservedratioofsignaltonoiseisbetterthan 10 0 .Theamplificationfactorofthenuclearspinpolarizationoflaser polarized 1 2 9Xeis 10 4bycomparisonwiththeB…  相似文献   

17.
The NMR signal from the laser-polarized t29 Xe in low-pressure natural xenon gas has been observed with a Bruker WP-80SY NMR spectrometer. The laser-polarized 129 Xe was produced by the method of laser pumping and spin exchange in a magnetic field of 1.87 Tesla. It is obtained experimentally that the nuclear spin relaxation rate 1/T1 of laser-polarized 129Xe are (4.03±1.97)×10-3/see~(2.21±0.78)×10-3/see in the range of the 3.33×103 Pa~8.29×104 Pa Xe gas pressures, the apparent wall relaxation rate 1/Tw* =(1.98±0.18)×10-3/see, and the relaxation rate coefficient C of 133Cs-129Xe spin exchange is (2.81±0.74)×10-16 em3/sec.  相似文献   

18.
Xenon-129 NMR spectra have been measured for dilute solutions of129Xe dissolved in a series of n-alcohols and primary n-alkyl amines, as well as ethylene glycol and water. The chemical shifts recorded for129Xe in the alcohols and amines are found to be linearly related to solvent composition expressed in terms of the individual methyl and methylene groups as well as the nitrogen and oxygen bearing functional groups making up these compounds. This behavior is consistent with a simple model which considers the van der Waals contribution to the chemical shift of129Xe to result from pair interactions between a dissolved Xe atom and the individual methyl, methylene, and functional groups from which the solvent molecules are derived. The129Xe chemical shifts caused by the ?CH2?, ?NH2, and ?OH groups are found to be quite similar in magnitude, each being approximately twice that of a ?CH3 group.  相似文献   

19.
Nuclear-magnetic-resonance (NMR) measurement of laser-polarized gaseous129Xe produced by spin-exchange optical pumping with a narrow-linewidth laser at a high magnetic field of 4.7 T is reported. The samples are contained in the glass tubes. The nuclear spin polarization of the laserpolarized129Xe is 3.9%, and this corresponds to an enhancement of 9· 103 compared to the equilibrium value at 311 K and at the same magnetic field. The laser-enhanced129Xe NMR signals can be used in MR imaging.  相似文献   

20.
The lifetime of negative muons in the 129Xe 1s state was measured. The muon capture rate in 129Xe is compared with that in the 132, 136Xe isotopes. The capture rate was found to depend on the mass number of the cited isotopes. The experimental results are compared with the results of calculations by the semiempirical Goulard-Primakoff formula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号