首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sonochemistry uses ultrasound to improve or modify chemical reactions. Sonochemistry occurs when the ultrasound causes chemical effects on the reaction system, such as the formation of free radicals, that intensify the reaction. Many studies have investigated the synthesis of nanomaterials by the sonochemical method, but there is still very limited information on the detailed characterization of these physicochemical and morphological nanoparticles. In this comprehensive review, recent advances in the sonochemical synthesis of nanomaterials based on iron oxide nanoparticles (Fe3O4NP), gold nanoparticles (AuNP) and iron oxide-coated gold nanoparticles (Fe3O4@Au NP) are discussed. These materials are the most studied materials for various applications, such as medical and commercial uses. This review will: (1) address the simple processing and observations on the principles of sonochemistry as a starting point for understanding the fundamental mechanisms, (2) summarize and review the most relevant publications and (3) describe the typical shape of the products provided in sonochemistry. All in all, this review’s main outcome will provide a comprehensive overview of the available literature knowledge that promotes and encourages future sonochemical work.  相似文献   

2.
Graphene/noble metal substrates for surface enhanced RAMAN scattering (SERS) possess synergistically improved performance, due to the strong chemical enhancement mechanism accounted to graphene and the electromagnetic mechanism raised from the metal nanoparticles. However, only the effect of noble metal nanoparticles characteristics on the SERS performance was studied so far. In attempts to bring a light to the effect of quality of graphene, in this work, two different graphene oxides were selected, slightly oxidized GOS (20%) with low aspect ratio (1000) and highly oxidized (50%) GOG with high aspect ratio (14,000). GO and precursors for noble metal nanoparticles (NP) simultaneous were reduced, resulting in rGO decorated with AgNPs and AuNPs. The graphene characteristics affected the size, shape, and packing of nanoparticles. The oxygen functionalities actuated as nucleation sites for AgNPs, thus GOG was decorated with higher number and smaller size AgNPs than GOS. Oppositely, AuNPs preferred bare graphene surface, thus GOS was covered with smaller size, densely packed nanoparticles, resulting in the best SERS performance. Fluorescein in concentration of 10−7 M was detected with enhancement factor of 82 × 104. This work demonstrates that selection of graphene is additional tool toward powerful SERS substrates.  相似文献   

3.
4.
In this study, superparamagnetic iron oxide nanoparticles (SPIONs) were engineered with an organic coating composed of low molecular weight heparin (LMWH) and bovine serum albumin (BSA), providing heparin-based nanoparticle systems (LMWH@SPIONs). The purpose was to merge the properties of the heparin skeleton and an inorganic core to build up a targeted theranostic nanosystem, which was eventually enhanced by loading a chemotherapeutic agent. Iron oxide cores were prepared via the co-precipitation of iron salts in an alkaline environment and oleic acid (OA) capping. Dopamine (DA) was covalently linked to BSA and LMWH by amide linkages via carbodiimide coupling. The following ligand exchange reaction between the DA-BSA/DA-LMWH and OA was conducted in a biphasic system composed of water and hexane, affording LMWH@SPIONs stabilized in water by polystyrene sulfonate (PSS). Their size and morphology were investigated via dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. The LMWH@SPIONs’ cytotoxicity was tested, showing marginal or no toxicity for samples prepared with PSS at concentrations of 50 µg/mL. Their inhibitory activity on the heparanase enzyme was measured, showing an effective inhibition at concentrations comparable to G4000 (N-desulfo-N-acetyl heparin, a non-anticoagulant and antiheparanase heparin derivative; Roneparstat). The LMWH@SPION encapsulation of paclitaxel (PTX) enhanced the antitumor effect of this chemotherapeutic on breast cancer cells, likely due to an improved internalization of the nanoformulated drug with respect to the free molecule. Lastly, time-domain NMR (TD-NMR) experiments were conducted on LMWH@SPIONs obtaining relaxivity values within the same order of magnitude as currently used commercial contrast agents.  相似文献   

5.
辛宝娟  邢国文 《化学进展》2010,22(4):593-602
纳米粒子作为酶固定化的载体,当其具有磁性时,制备的固定化酶易于从反应体系中分离和回收,操作简便;并且利用外部磁场可以控制磁性材料固定化酶的运动方式和方向,替代传统的机械搅拌方式,提高固定化酶的催化效率。在众多纳米材料中,氧化铁因其在磁性、催化等多方面的良好特性而倍受瞩目。本文对近年来各种氧化铁磁性纳米粒子固定化酶,尤其是固定化脂肪酶和蛋白酶的制备方法及其应用做了较为详细的阐述,对这些氧化铁磁性纳米粒子固定化酶的优缺点和发展前景进行了讨论。  相似文献   

6.
This study presents the synthesis and characterization of zwitterionic core–shell hybrid nanoparticles consisting of a core of iron oxide multicore nanoparticles (MCNPs, γ‐Fe2O3) and a shell of sultonated poly(2‐vinylpyridine‐grad‐acrylic acid) copolymers. The gradient copolymers are prepared by reversible addition fragmentation chain transfer polymerization of 2‐vinylpyridine (2VP), followed by the addition of tert‐butyl acrylate and subsequent hydrolysis. Grafting of P(2VP‐grad‐AA) onto MCNP results in P(2VP‐grad‐AA)@MCNP, followed by quaternization using 1,3‐propanesultone—leading to P(2VPSgrad‐AA)@MCNP with a zwitterionic shell. The resulting particles are characterized by transmission electron microscopy, dynamic light scattering, and thermogravimetric analysis measurements, showing particle diameters of ≈70–90 nm and an overall content of the copolymer shell of ≈10%. Turbidity measurements indicate increased stability toward secondary aggregation after coating if compared to the pristine MCNP and additional cytotoxicity tests do not reveal any significant influence on cell viability.

  相似文献   


7.
8.
The treatment of graphene oxide (GO) with potassium thioacetate followed by an aqueous work‐up yields a new material via the ring‐opening of the epoxide groups. The new material is a thiol‐functionalized GO (GO‐SH) which is able to undergo further functionalization. Reaction with butyl bromide gives another new material, GO‐SBu, which shows significantly enhanced thermal stability compared to both GO and GO‐SH. The thiol‐functionalized GO material showed a high affinity for gold, as demonstrated by the selective deposition of a high density of gold nanoparticles.  相似文献   

9.
Ultrathin (monolayer) films of transition metal oxides grown on metal substrates have recently received considerable attention as promising catalytic materials, in particular for low‐temperature CO oxidation. The reaction rate on such systems often increases when the film only partially covers the support, and the effect is commonly attributed to the formation of active sites at the metal/oxide boundary. By studying the structure and reactivity of FeO(111) films on Pt(111), it is shown that, independent of the film coverage, CO oxidation takes place at the interface between reduced and oxidized phases in the oxide film formed under reaction conditions. The promotional role of a metal support is to ease formation of the reduced phase by reaction between CO adsorbed on metal and oxygen at the oxide island edge.  相似文献   

10.
The coating of super‐paramagnetic iron oxide nanoparticles (SPIONs) with multiple shells is demonstrated by building a layer assembled from carboxymethyldextran and poly(diallydimethylammonium chloride). Three shells are produced stepwise around aggregates of SPIONs by the formation of a polyelectrolyte complex. A growing particle size from 96 to 327 nm and a zeta potential in the range of +39 to ?51 mV are measured. Microscopic techniques such as TEM, SEM, and AFM exemplify the core‐shell structures. Magnetic force microscopy and vibrating sample magnetometer measurements confirm the architecture of the multishell particles. Cell culture experiments show that even nanoparticles with three shells are still taken up by cells.

  相似文献   


11.
We present herein a personal account of our achievements in the development of novel catalytic systems based on late‐transition‐metal complexes for the hydroarylation of alkynes. In particular, our targets were intermolecular hydroarylation reactions with arene or heteroarene substrates devoid of directing groups. We have shown that complexes of palladium, platinum or gold with N‐heterocyclic carbene (NHC) ligands can be particularly useful catalysts for this reaction; the NHC ligand imparts greater stability to the complex and renders the catalytic system more productive. Furthermore, we have identified promoters and reaction media that allow to significantly improve the catalytic activity under mild conditions, to control the reaction chemoselectivity and to steer it towards more complex products; thus making this reaction considerably more attractive for the synthetic chemist.

  相似文献   


12.
氧化铁磁性纳米粒子通过表面化学修饰得到无机、有机或聚合物壳包覆在其表面。其中的壳结构既具有生物适应性,又具有可键合生物分子如细胞、蛋白质、酶、抗体和核酸的活性基团,而核具有磁性特性。本文总结了氧化铁磁性纳米粒子的制备方法,介绍了其表面化学修饰及在分离和分析应用的最新进展。  相似文献   

13.
Developing gold nanoparticles (AuNPs) with well‐designed functionality is highly desirable for boosting the performance and versatility of inorganic–organic hybrid materials. In an attempt to achieve ion recognition with specific signal expressions, we present here 4‐piperazinyl‐1,8‐naphthalimide‐functionalized AuNPs for the realization of quantitative recognition of FeIII ions with dual (colorimetric and fluorescent) output. The research takes advantage of 1) quantity‐controlled chelation‐mode transformation of the piperazinyl moiety on the AuNPs towards FeIII, thereby resulting in an aggregation–dispersion conversion of the AuNPs in solution, and 2) photoinduced electron transfer of a naphthaimide fluorophore on the AuNPs, thus leading to reversible absorption and emission changes. The functional AuNPs are also responsive to pH variations. This strategy for realizing the aggregation–dispersion conversion of AuNPs with returnable signal output might exhibit application potential for advanced nanoscale chemosensors.  相似文献   

14.
Summary: We report novel organic‐inorganic hybrid nanomaterials that consist of polymer hydrogel nanoparticles (nanogels) and calcium phosphate. Hybrid nanoparticles that measure ca. 40 nm are synthesized from a dilute solution of hydroxyapatite using nanogels as templates for calcium phosphate mineralization. These nanoparticles show a narrow size distribution and high colloidal stability. Nanogel‐adsorbed liposomes act as templates for hierarchical hybrid nanostructures. These nanohybrids can potentially be used as biocompatible drug carriers with controlled‐release properties.

TEM images of calcium phosphate nanoparticles formed in the presence of CHP nanogels (0.5 mg · mL−1) (left) and nanogel‐liposomes (CHP 0.05 mg · mL−1, DPPC 0.08 mg · mL−1)(right).  相似文献   


15.
A comparative analysis of the magnetic properties of iron oxide nanoparticles grown in the cavity of the DNA‐binding protein from starved cells of the bacterium Listeria innocua, LiDps, and of its triple‐mutant lacking the catalytic ferroxidase centre, LiDps‐tm, is presented. TEM images and static and dynamic magnetic and electron magnetic resonance (EMR) measurements reveal that, under the applied preparation conditions, namely alkaline pH, high temperature (65 °C), exclusion of oxygen, and the presence of hydrogen peroxide, maghemite and/or magnetite nanoparticles with an average diameter of about 3 nm are mineralised inside the cavities of both LiDps and LiDps‐tm. The magnetic nanoparticles (MNPs) thus formed show similar magnetic properties, with superparamagnetic behaviour above 4.5 K and a large magnetic anisotropy. Interestingly, in the EMR spectra an absorption at half‐field is observed, which can be considered as a manifestation of the quantum behaviour of the MNPs. These results indicate that Dps proteins can be advantageously used for the production of nanomagnets at the interface between molecular clusters and traditional MNPs and that the presence of the ferroxidase centre, though increasing the efficiency of nanoparticle formation, does not affect the nature and fine structure of the MNPs. Importantly, the self‐organisation of MNP‐containing Dps on HRTEM grids suggests that Dps‐enclosed MNPs can be deposited on surfaces in an ordered fashion.  相似文献   

16.
Owing to their high natural abundance, low cost, easy availability, and excellent magnetic properties, considerable interest has been devoted to the synthesis and applications of iron oxide nanostructured materials. Liquid-phase synthesis methods are economical and environmentally friendly with low energy consumption and volatile emissions, and as such have received much attention for the preparation of iron oxide nanostructured materials. Herein, the liquid-phase synthesis methods of iron oxide nanostructured materials including the co-precipitation method, microemulsion method, conventional hydrothermal and solvothermal methods, microwave-assisted heating method, sonolysis method, and other methods are summarized and reviewed. Many iron oxide nanostructured materials, self-assembled nanostructures, and nanocomposites have been successfully prepared, which are of great significance to enhance their structure-dependent properties and applications. The specific roles of liquid-phase chemical reaction parameters in regulating the chemical composition, structure, crystallinity, morphology, particle size, and dispersive behavior of the as-prepared iron oxide nanostructured materials are emphasized. The biomedical, environmental, and electrochemical energy storage applications of iron oxide nanostructured materials are discussed. Finally, challenges and perspectives are proposed for future investigations on the liquid-phase synthesis and applications of iron oxide nanostructured materials.  相似文献   

17.
Here, we report the results of our detailed study on the fabrication of iron oxide magnetic nanoparticles confined in mesoporous silica KIT‐6 with a 3D structure and large, tunable pore diameters. It was confirmed by XRD, nitrogen adsorption, high‐resolution (HR) TEM, and magnetic measurements that highly dispersed iron oxide nanoparticles are occupied inside the mesochannels of KIT‐6. We also demonstrated that the size of the iron oxide nanoparticle can be controlled by simply changing the pore diameter of the KIT‐6 and the weight percentage of the iron oxide nanoparticles. The effect of the weight percentage and size of the iron oxide nanoparticles, and the textural parameters of the support on the magnetic properties of iron oxide/KIT‐6 has been demonstrated. The magnetization increases with decreasing iron content in the pore channels of KIT‐6, whereas coercivity decreases for the same samples. Among the KIT‐6 materials studied, KIT‐6 with 7.5 wt % of iron showed the highest saturation magnetic moment and magnetic remanence. However, all the samples register a coercivity of around 2000 Oe, which is generally observed for the hard magnetic materials. In addition, we have found a paramagnetic‐to‐superparamagnetic transition at low temperature for samples with different iron content at low temperature. The cause for this exciting transition is also discussed in detail. Magnetic properties of the iron oxide loaded KIT‐6 were also compared with pure iron oxide and iron oxide loaded over SBA‐15. It was found that iron oxide loaded KIT‐6 showed the highest magnetization due to its 3D structure and large pore volume. The pore diameter of the iron oxide loaded KIT‐6 support also plays a critical role in controlling the magnetization and the blocking temperature, which has a direct relation to the particle diameter and increases from 48 to 63 K with an increase in the pore diameter of the support from 8 to 11.3 nm.  相似文献   

18.
Iron oxide nanoparticle (ION)-based ferro-nanofluids (FNs) have been used for different technological applications owing to their excellent magneto-rheological properties. A comprehensive overview of the current advancement of FNs based on IONs for various engineering applications is unquestionably necessary. Hence, in this review article, various important advanced technological applications of ION-based FNs concerning different engineering fields are critically summarized. The chemical engineering applications are mainly focused on mass transfer processes. Similarly, the electrical and electronics engineering applications are mainly focused on magnetic field sensors, FN-based temperature sensors and tilt sensors, microelectromechanical systems (MEMS) and on-chip components, actuators, and cooling for electronic devices and photovoltaic thermal systems. On the other hand, environmental engineering applications encompass water and air purification. Moreover, mechanical engineering or magneto-rheological applications include dampers and sealings. This review article provides up-to-date information related to the technological advancements and emerging trends in ION-based FN research concerning various engineering fields, as well as discusses the challenges and future perspectives.  相似文献   

19.
Plasmonic Au and magnetic Fe are coupled into uniform Au@Fe core–shell nanoparticles (NPs) to confirm that electron transfer occurred from the Au core to the Fe shell. Au NPs synthesized in aqueous medium are used as seeds and coated with an Fe shell. The resulting Au@Fe NPs are characterized by using various analytical techniques. X‐ray photoelectron spectroscopy and superconducting quantum interference device measurements reveal that the Fe shell of the Au@Fe NPs mainly consists of paramagnetic Wüstite with a thin surface oxide layer consisting of maghemite or magnetite. Electron transfer from the Au core to the Fe shell effectively suppresses iron oxidation from Fe2+ to Fe3+ near the interface between the Au and the Fe. The charge‐transfer‐induced electronic modification technique enables us to control the degree of iron oxidation and the resulting magnetic properties.  相似文献   

20.
Silver nanoparticles (AgNPs) are increasingly used in daily life for their antibacterial properties, but their low stability and high cytotoxicity hamper practical applications. In this work, sodium 1‐naphthalenesulfonate‐functionalized reduced graphene oxide (NA‐rGO) was used as a substrate for AgNPs to produce a AgNP‐NA‐rGO hybrid. This hybrid showed substantially higher antibacterial activity than polyvinyl pyrrolidone(PVP)‐stabilized AgNPs, and the AgNPs on NA‐rGO were more stable than the AgNPs on PVP, resulting in long‐term antibacterial effects. More importantly, this hybrid showed excellent water solubility and low cytotoxicity, suggesting the great potential application as sprayable reduced graphene oxide based antibacterial solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号