首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a powerful synthon, N ′‐(2‐alkynylbenzylidene)hydrazides have been utilized efficiently for the construction of N‐heterocycles. Since N ′‐(2‐alkynylbenzylidene)hydrazides can easily undergo intramolecular 6‐endo cyclization promoted by silver triflate or electrophiles, the resulting isoquinolinium‐2‐yl amides can proceed through subsequent transformations including [3 + 2] cycloaddition, nucleophilic addition, and [3 + 3] cycloaddition. Several unexpected rearrangements via radical processes were observed in some cases, which afforded nitrogen‐containing heterocycles with molecular complexity. Reactive partners including internal alkynes, arynes, ketenimines, ketenes, allenoates, and activated alkenes reacted through [3 + 2] cycloaddition and subsequent aromatization, leading to diverse H‐pyrazolo[5,1‐a]isoquinolines with high efficiency. Nucleophilic addition to the in situ generated isoquinolinium‐2‐yl amide followed by aromatization also produced H‐pyrazolo[5,1‐a]isoquinoline derivatives when terminal alkynes, carbonyls, enamines, and activated methylene compounds were used as nucleophiles. Isoquinoline derivatives were obtained when indoles or phosphites were employed as nucleophiles in the reactions of N ′‐(2‐alkynylbenzylidene)hydrazides. A tandem 6‐endo cyclization and [3 + 3] cycloaddition of cyclopropane‐1,1‐dicarboxylates with N ′‐(2‐alkynylbenzylidene)hydrazides was observed as well. Small libraries of these compounds were constructed. Biological evaluation suggested that some compounds showed promising activities for inhibition of CDC25B, TC‐PTP, HCT‐116, and PTP1B.

  相似文献   


2.
It was demonstrated that ortho‐substituted anilines are prone to undergo hydroamination reactions with diethyl acetylenedicarboxylate in a planetary ball mill. A sequential coupling of the intermolecular hydroamination reaction with intramolecular ring closure was utilized for the syntheses of benzooxazines, quinoxalines, and benzothiazines from readily available building blocks, that is, electrophilic alkynes and anilines with OH, NH, or SH groups in the ortho position. For the heterocycle formation, it was shown that several stress conditions were able to initiate the reaction in the solid state. Processing in a ball mill seemed to be advantageous over comminution with mortar and pestle with respect to process control. In the latter case, significant postreaction modification occurred during solid‐state analysis. Cryogenic milling proved to have an adverse effect on the molecular transformation of the reagents.  相似文献   

3.
A novel and simple t‐BuOLi/I2‐mediated synthesis of 1,2,4‐trisubstituted imidazoles was developed without transition‐metal added. The transition‐metal‐free strategy tolerated a range of substrates and provided products in moderate to good yields with 100% regioselectivity.  相似文献   

4.
We disclose an efficient and operationally simple protocol for the preparation of fused N‐heterocycles starting from readily available 2‐nitrobiaryls and PhMgBr under mild conditions. More than two dozen N‐heterocycles, including two bioactive natural products, have been synthesized using this method. A stepwise electrophilic aromatic cyclization mechanism was proposed by DFT calculations.  相似文献   

5.
Azocine derivatives were successfully synthesized from O‐propargylic oximes by means of a Rh‐catalyzed 2,3‐rearrangement/heterocyclization cascade reaction. Moreover, the chirality of the substrate was maintained throughout the cascade process to afford the corresponding optically active azocines.  相似文献   

6.
A low‐cost, modular, and easily scalable multicomponent procedure affording access in good yields and excellent selectivity (up to 93 %) to a wide range of (a)chiral unsymmetrical 1‐aryl‐3‐cycloalkyl‐imidazolium salts is disclosed. Electronic and steric properties of the corresponding unsymmetrical unsaturated N‐heterocyclic carbene (U2‐NHC) ligands were evaluated and evidenced strong electron donor ability, high steric discrimination, and modular steric demand.  相似文献   

7.
8.
9.
Cationic N‐heterocycles are an important class of organic compounds largely present in natural and bioactive molecules. They are widely used as fluorescent dyes for biological studies, as well as in spectroscopic and microscopic methods. These compounds are key intermediates in many natural and pharmaceutical syntheses. They are also a potential candidate for organic light‐emitting diodes (OLEDs). Because of these useful applications, the development of new methods for the synthesis of cationic N‐heterocycles has received a lot of attention. In particular, many C?H activation methodologies that realize high step‐ and atom‐economies toward these compounds have been developed. In this review, recent advancements in the synthesis and applications of cationic N‐heterocycles through C?H activation reactions are summarized. The new C?H activation reactions described in this review are preferred over their classical analogs.  相似文献   

10.
11.
Based on the assumption that intramolecularly formed protic oxonium ylides could be trapped by electrophiles, transition‐metal‐catalyzed reactions of diazoesters bearing a primary hydroxy group with electron‐deficient aldehydes and isatins were examined. Good to high chemo‐ and diastereoselectivities were achieved with reactions catalyzed by Cu(hfacac)2. The reactions were assumed to occur via tandem intramolecular protic oxonium ylide formation and subsequent aldol‐type addition. They not only provided an efficient entry to 3‐substituted 1,4‐dioxan‐2‐one heterocycles with at least one quaternary carbon center but also provided experimental evidence for a stepwise pathway for the transition‐metal‐catalyzed intramolecular O? H insertion of diazo compounds.  相似文献   

12.
A PdII‐catalyzed oxidative tandem cyclization was developed for the construction of fused 5,6‐bicyclic N, O‐heterocycles. This reaction was enabled by the combined use of a 3‐methylpyridine ligand and pentafluorobenzoic acid additive. A range of heterocyclic products with different substituents could be prepared in moderate to good yields via this methodology. Several transformations, including a scaled‐up preparation of product 2 a , were also carried out showing the good applicability of our methodology.  相似文献   

13.
The N‐heterocyclic carbene–phosphinidene adduct IPr?PSiMe3 is introduced as a synthon for the preparation of terminal carbene–phosphinidyne transition metal complexes of the type [(IPr?P)MLn] (MLn=(η6‐p‐cymene)RuCl) and (η5‐C5Me5)RhCl). Their spectroscopic and structural characteristics, namely low‐field 31P NMR chemical shifts and short metal–phosphorus bonds, show their similarity with arylphosphinidene complexes. The formally mononegative IPr?P ligand is also capable of bridging two or three metal atoms as demonstrated by the preparation of bi‐ and trimetallic RuAu, RhAu, Rh2, and Rh2Au complexes.  相似文献   

14.
A hydrogenation of N‐heterocycles mediated by diboronic acid with water as the hydrogen atom source is reported. A variety of N‐heterocycles can be hydrogenated with medium to excellent yields within 10 min. Complete deuterium incorporation from stoichiometric D2O onto substrates further exemplifies the H/D atom sources. Mechanism studies reveal that the reduction proceeds with initial 1,2‐addition, in which diboronic acid synergistically activates substrates and water via a six‐membered ring transition state.  相似文献   

15.
A general and efficient methodology for the direct transition metal free trifluoromethylthiolation of a broad range of biologically relevant N‐heteroarenes is reported employing abundant sodium chloride as the catalyst. This method is operationally simple, exhibits high functional group tolerance, and does not require protecting groups.  相似文献   

16.
Three transition‐metal–carbonyl complexes [V( L )(CO)3(Cp)] ( 1 ), [Co( L )(CO)(Cp)] ( 2 ), and [Co( L2 )(CO)3]+[CoCO)4]? ( 3 ), each containing stable N‐heterocyclic‐chlorosilylene ligands ( L ; L =PhC(NtBu)2SiCl) were synthesized from [V(CO)4(Cp)], [Co(CO)2(Cp)], and Co2(CO)8, respectively. Complexes 1 , 2 , 3 were characterized by NMR and IR spectroscopy, EI‐MS spectrometry, and elemental analysis. The molecular structures of compounds 1 , 2 , 3 were determined by single‐crystal X‐ray diffraction.  相似文献   

17.
18.
This account describes our recent efforts devoted to gold chemistry since 2009. Based on furyl–Au 1,3‐dipole analogues and related gold carbene intermediates, a rich variety of gold‐catalyzed cascade reactions have been developed, which provide facile access to a diverse range of novel carbo‐ and heterocycles. In these reactions, the selectivity can be well controlled by the catalyst (ligand and metal), substrate or reagent. In addition, we have also developed the corresponding enantioselective variants, which are guided by bis(phosphinegold) complexes derived from axially chiral scaffolds and asymmetric gold/chiral Brønsted acid relay catalysis.  相似文献   

19.
20.
Organocatalytic ester activation is developed for a highly selective cascade reaction between saturated esters and amino enones. The reaction involves activation of the β‐carbon atom of the ester as a key step. This method allows a single‐step access to multicyclic oxoquinoline‐type heterocycles with high enantiomeric ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号