首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mechanism of the CuAAC reaction has been investigated by electrospray ionization mass spectrometry (ESI‐MS) using a combination of the neutral reactant approach and the ion‐tagging strategy. Under these conditions, for the first time, putative dinuclear copper intermediates were fished out and characterized by ESI(+)‐MS/MS. New insight into the CuAAC reaction mechanisms is provided and a catalytic cycle is proposed.  相似文献   

2.
3.
An iridium‐catalyzed azide–alkyne cycloaddition reaction (IrAAC) of electron‐rich internal alkynes is described. It is the first efficient intermolecular AAC of internal thioalkynes. The reaction exhibits remarkable features, such as high efficiency and regioselectivity, mild reaction conditions, easy operation, and excellent compatibility with air and a broad spectrum of organic and aqueous solvents. It complements the well‐known CuAAC and RuAAC click reactions.  相似文献   

4.
5.
We report an efficient and scalable synthesis of azidotrifluoromethane (CF3N3) and longer perfluorocarbon‐chain analogues (RFN3; RF=C2F5, n C3F7, n C8F17), which enables the direct insertion of CF3 and perfluoroalkyl groups into triazole ring systems. The azidoperfluoroalkanes show good reactivity with terminal alkynes in copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC), giving access to rare and stable N ‐perfluoroalkyl triazoles. Azidoperfluoroalkanes are thermally stable and the efficiency of their preparation should be attractive for discovery programs.  相似文献   

6.
A copper catalyst system derived from TaoPhos and CuF2 was used successfully for catalytic asymmetric Huisgen [3+2] cycloaddition of azides and alkynes to give optically pure products containing succinimide‐ and triazole‐substituted quaternary carbon stereogenic centers. The desired products were obtained in good yields (60–80 %) and 85:15 to >99:1 enantiomeric ratio (e.r.) in this click cycloaddition reaction.  相似文献   

7.
Mechanophores, that is, molecules that show a defined response to force, are crucial building blocks of mechanoresponsive materials. The possibility of mechanically induced cycloreversion for a series of triazoles formed via strain‐promoted azide–alkyne cycloaddition reactions was investigated by density functional theory calculations, and these triazoles were compared to the 1,4‐ and 1,5‐regioisomers formed in the reaction of an azide with a terminal alkyne. We show that cycloreversion is in principal possible and that the pulling geometry is the most important parameter that determines the probability of cycloreversion. We further compared triazole stability to the mechanical stability of polymers that are frequently used as force transducers in mechanochemical experiments and identified DIBAC (azadibenzylcyclooctyne) as a promising mechanophore for future applications.  相似文献   

8.
9.
There is a great deal of interest in developing stable modified nucleic acids for application in diverse fields. Phosphate‐modified DNA analogues, in which the phosphodiester group is replaced with a surrogate group, are attractive because of their high stability and resistance to nucleases. However, the scope of conventional solution or solid‐phase DNA synthesis is limited for making DNA analogues with unnatural linkages. Other limitations associated with conventional synthesis include difficulty in making larger polymers, poor yield, incomplete reaction, and difficult purification. To circumvent these problems, a single‐crystal‐to‐single‐crystal (SCSC) synthesis of a 1,5‐triazole‐linked polymeric ssDNA analogue from a modified nucleoside through topochemical azide–alkyne cycloaddition (TAAC) is reported. This is the first solvent‐free, catalyst‐free synthesis of a DNA analogue that proceeds in quantitative yield and does not require any purification.  相似文献   

10.
11.
Supramolecular encapsulation is known to alter chemical properties of guest molecules. We have applied this strategy of molecular encapsulation to temporally control the catalytic activity of a stable copper(I)–carbene catalyst. Encapsulation of the copper(I)–carbene catalyst by the supramolecular host cucurbit[7]uril (CB[7]) resulted in the complete inactivation of a copper‐catalyzed alkyne–azide cycloaddition (CuAAC) reaction. The addition of a chemical signal achieved the near instantaneous activation of the catalyst, by releasing the catalyst from the inhibited CB[7] catalyst complex. To broaden the scope of our on‐demand CuAAC reaction, we demonstrated the protein labeling of vinculin with the copper(I)–carbene catalyst, to inhibit its activity by encapsulation with CB[7] and to initiate labeling at any moment by adding a specific signal molecule. Ultimately, this strategy allows for temporal control over copper‐catalyzed click chemistry, on small molecules as well as protein targets.  相似文献   

12.
The CuI‐catalyzed 1,3‐dipolar azide‐alkyne cycloaddition (CuAAC) has arisen as one of the most useful chemical transformations for introducing complexity onto surfaces and materials owing to its functional‐group tolerance and high yield. However, methods for monitoring such reactions in situ at the widely used silica/solvent interface are hampered by challenges associated with probing such buried interfaces. Using the surface‐specific technique broadband sum frequency generation (SFG), we monitored the reaction of a benzyl azide monolayer in real time at the silica/methanol interface. A strong peak at 2096 cm?1 assigned to the azides was observed for the first time by SFG. Using a cyano‐substituted alkyne, the decrease of the azide peak and the increase of the cyano peak (2234 cm?1) were probed simultaneously. From the kinetic analysis, the reaction order with respect to copper was determined to be 2.1, suggesting that CuAAC on the surface follows a similar mechanism as in solution.  相似文献   

13.
Five new tetradentate ligands [NNNN] with benzimidazolyl‐imine or amine nitrogen donors have been synthesized in good yields under mild conditions from easily available substrates. transN,N′‐bis(1‐Ethyl‐2‐benzimidazolylmethylene)cyclohexane‐1,2‐diimine is the best accelerating ligand in this series that supports the CuI‐catalyzed Ullmann N‐arylation and the direct three‐component azide–alkyne cycloaddition reaction to give the corresponding substituted imidazole, pyrazole, and triazole in high yields. Single‐crystal X‐ray diffraction analysis of its complex with CuI reveals a novel one‐dimensional coordination polymer of the metal chain bridged alternately by the [NNNN] ligand and diiodides.  相似文献   

14.
Two series of 4‐ and 5‐tetrathiafulvalenyl‐1,2,3‐triazoles, as multifunctional ligands and precursors for molecular materials, have been synthesized by copper‐ or ruthenium‐based “click” chemistry. The solid‐state structures of three ligands and two CuII complexes were determined. Large differences in the electron‐donating properties between the 1,4‐ and 1,5‐isomers were evidenced by cyclic voltammetry. Theoretical calculations support this observation and allow the assignment of the electronic transitions observed in UV/Vis spectra of the ligands.  相似文献   

15.
Copper(I)‐catalyzed addition of limited amounts of azides to multiple alkynes, which led to statistical mixtures of triazole/acetylene derivatives or, in other cases, resulted in preferred formation of multiple triazoles, was studied at pre‐organizable calixarene platforms bearing up to four propargyl groups. Depending on calixarene structures and reaction conditions, the unprecedented specific or selective formation of exhaustively triazolated calixarenes or a complete loss of the selectivity were observed. Both autocatalytic copper activation and a local copper(I) concentration increase due to copper–triazole complexation were thoroughly studied as the most expected reasons for the selectivity and both were disproved. Mixed triazolated/propargylated calixarenes and their copper(I) complexes proved not to be involved in the cascade‐like process that was modeled to be driven by an intramolecular transfer of two copper(I) ions from a just‐formed binuclear copper intermediate to the adjacent acetylene unit.  相似文献   

16.
The reactivity of an exemplary ruthenium(II)–azido complex towards non‐activated, electron‐deficient, and towards strain‐activated alkynes at room temperature and low millimolar azide and alkyne concentrations has been investigated. Non‐activated terminal and internal alkynes failed to react under such conditions, even under copper(I) catalysis conditions. In contrast, as expected, rapid cycloaddition was observed with electron‐deficient dimethyl acetylenedicarboxylate (DMAD) as the dipolarophile. Since DMAD and related propargylic esters are excellent Michael acceptors and thus unsuitable for biological applications, we investigated the reactivity of the azido complex towards cycloaddition with derivatives of cyclooctyne (OCT), bicyclo[6.1.0]non‐4‐yne (BCN), and azadibenzocyclooctyne (ADIBO). While no reaction could be observed in the case of the less strained cyclooctyne OCT, the highly strained cyclooctynes BCN and ADIBO readily reacted with the azido complex, providing the corresponding stable triazolato complexes, which were amenable to purification by conventional silica gel column chromatography. An X‐ray crystal structure of an ADIBO cycloadduct was obtained and verified that the formed 1,2,3‐triazolato ligand coordinates the metal center through the central N2 atom. Importantly, the determined second‐order rate constant for the ADIBO cycloaddition with the azido complex (k2=6.9 × 10?2 M ?1 s?1) is comparable to the rate determined for the ADIBO cycloaddition with organic benzyl azide (k2=4.0 × 10?1 M ?1 s?1). Our results demonstrate that it is possible to transfer the concept of strain‐promoted azide–alkyne cycloaddition (SPAAC) from purely organic azides to metal‐coordinated azido ligands. The favorable reaction kinetics for the ADIBO‐azido‐ligand cycloaddition and the well‐proven bioorthogonality of strain‐activated alkynes should pave the way for applications in living biological systems.  相似文献   

17.
The highly conserved HIV‐1 transactivation response element (TAR) binds to the trans‐activator protein Tat and facilitates viral replication in its latent state. The inhibition of Tat–TAR interactions by selectively targeting TAR RNA has been used as a strategy to develop potent antiviral agents. Therefore, HIV‐1 TAR RNA represents a paradigmatic system for therapeutic intervention. Herein, we have employed biotin‐tagged TAR RNA to assemble its own ligands from a pool of reactive azide and alkyne building blocks. To identify the binding sites and selectivity of the ligands, the in situ cycloaddition has been further performed using control nucleotide (TAR DNA and TAR RNA without bulge) templates. The hit triazole‐linked thiazole peptidomimetic products have been isolated from the biotin‐tagged target templates using streptavidin beads. The major triazole lead generated by the TAR RNA presumably binds in the bulge region, shows specificity for TAR RNA over TAR DNA, and inhibits Tat–TAR interactions.  相似文献   

18.
The copper(I)‐catalyzed azide‐alkyne cycloaddition (CuAAC) was discovered in 2002, which has become the most remarkable example for “click chemistry” to date. In CuAAC reaction, 1‐copper(I) alkyne has been recognized to be a key intermediate. However, many contradictory experimental results for this intermediate were reported in literature. For example, only the in‐situ generated 1‐copper(I) alkyne was used, while the premade 1‐copper(I) alkyne proved to be inefficient under the standard conditions. The kinetic studies indicated that CuAAC reaction had a strict second‐order dependence on Cu(I) and the DFT studies demonstrated that 1‐copper(I) alkyne intermediate should be a dinuclear copper(I) complex. But these results were inconsistent with the structure of the premade 1‐copper(I) alkyne. Although hundreds of structurally different ligands were reported to significantly enhance the efficiency of CuAAC reaction, their functions were assigned to prevent the oxidation and the disproportionation of Cu(I) ion. Based on the investigation of the references and our works, we proposed that the in‐situ generated 1‐copper(I) alkyne in CuAAC reaction is not identical with the premade 1‐copper(I) alkyne. The ligands may play dual roles to activate the 1‐copper(I) alkyne by blocking the polymerization of the in‐situ formed 1‐copper(I) alkynes and dissociating the polymeric structures of the premade 1‐copper(I) alkynes. As a result, we first disclosed that carboxylic acids can function as such activators and a novel carboxylic acid‐catalyzed CuAAC strategy was developed, which has been proven to be the most convenient and highly efficient CuAAC method to date. Furthermore, highly efficient and regioselective methods for the syntheses of 1,4,5‐trisubstituted 1,2,3‐triazoles were developed by using the premade 1‐copper(I) alkynes as substrates, in which the novel function of the premade 1‐copper(I) alkynes as excellent dipolarophiles was first disclosed and applied. In this article, a series of works reported by our group for the in‐situ generated and the premade 1‐copper(I) alkynes in cycloadditions are reviewed.  相似文献   

19.
20.
Cyclic multiblock polymers with high‐order blocks are synthesized via the combination of single‐electron transfer living radical polymerization (SET‐LRP) and copper‐catalyzed azide‐alkyne cycloaddition (CuAAC). The linear α,ω‐telechelic multiblock copolymer is prepared via SET‐LRP by sequential addition of different monomers. The SET‐LRP approach allows well control of the block length and sequence as A‐B‐C‐D‐E, etc. The CuAAC is then performed to intramolecularly couple the azide and alkyne end groups of the linear copolymer and produce the corresponding cyclic copolymer. The block sequence and the cyclic topology of the resultant cyclic copolymer are confirmed by the characterization of 1H nuclear magnetic resonance spectroscopy, gel permeation chromatography, Fourier transform infrared spectroscopy, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号