首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copper(I) halides with triphenyl phosphine and imidaozlidine‐2‐thiones (L ‐NMe, L ‐NEt, and L ‐NPh) in acetonitrile/methanol (or dichloromethane) yielded copper(I) mixed‐ligand complexes: mononuclear, namely, [CuCl(κ1‐S‐L ‐NMe)(PPh3)2] ( 1 ), [CuBr(κ1‐S‐L ‐NMe)(PPh3)2] ( 2 ), [CuBr(κ1‐S‐L ‐NEt)(PPh3)2] ( 5 ), [CuI(κ1‐S‐L ‐NEt)(PPh3)2] ( 6 ), [CuCl(κ1‐S‐L ‐NPh)(PPh3)2] ( 7 ), and [CuBr(κ1‐S‐L ‐NPh)(PPh3)2] ( 8 ), and dinuclear, [Cu21‐I)2(μ‐S‐L ‐NMe)2(PPh3)2] ( 3 ) and [Cu2(μ‐Cl)21‐S‐L ‐NEt)2(PPh3)2] ( 4 ). All complexes were characterized with analytical data, IR and NMR spectroscopy, and X‐ray crystallography. Complexes 2 – 4 , 7 , and 8 each formed crystals in the triclinic system with P$\bar{1}$ space group, whereas complexes 1 , 5 , and 6 crystallized in the monoclinic crystal system with space groups P21/c, C2/c, and P21/n, respectively. Complex 2 has shown two independent molecules, [(CuBr(κ1‐S‐L ‐NMe)(PPh3)2] and [CuBr(PPh3)2] in the unit cell. For X = Cl, the thio‐ligand bonded to metal as terminal in complex 4 , whereas for X = I it is sulfur‐bridged in complex 3 .  相似文献   

2.
The Crystal Structures of PPh4[MCl5(NCMe)] · MeCN (M = Ti, Zr), two Modifications of PPh4[TiCl5(NCMe)] and of cis ‐TiCl4(NCMe)2 · MeCN The title compounds were obtained by reactions of TiCl4 or ZrCl4, respectively, with PPh4Cl and acetonitrile in the presence of S2Cl2. PPh4[TiCl5(NCMe)] · MeCN is unstable and emanates the incorporated acetonitrile. PPh4[TiCl5(NCMe)] forms the two modifications aP114 and mP228, the latter being more stable. The crystal structures were determined by X‐ray diffraction. Triclinic PPh4[TiCl5(NCMe)]‐(aP114) crystallizes in a distorted variety at the tetragonal AsPh4[RuNCl4] type, i. e. with PPh4+ ions that are piled to columns in the c direction; the [TiCl5(NCMe)] ions are tilted vs. this direction and thus cause the symmetry reduction from P4/n to P1. PPh4[TiCl5(NCMe)] · MeCN and PPh4[ZrCl5(NCMe)] · MeCN also have the same packing principle as in AsPh4[RuNCl4] with a symmetry reduction from P4/n to P1121/n and a doubled c axis. Instead, PPh4[TiCl5(NCMe)]‐(mP228) has a packing with (PPh4+)2 pairs. Orthorhombic TiCl4(NCMe)2 · MeCN contains molecules having two acetonitrile ligands attached to the Ti atom in a cis configuration.  相似文献   

3.
Complexes [NiI3(mpta)2]I ( 1 ) and [NiI3(ppta)2]I ( 2 ) have been synthesized by reaction of nickel(II) halide salts with ‐1‐methyl‐1‐azonia‐3,5‐diaza‐7‐phosphatricyclo[3.3.1.13,7]decane iodide (mpta+I?) and 1‐(n‐propyl)‐1‐azonia‐3,5‐diaza‐7‐phosphatricyclo[3.3.1.13,7]decane bromide (ppta+Br?) respectively. The crystal structures of compounds 1 and 2 are described and are similar, with both compounds crystallizing in monoclinic space groups. The geometry about both nickel atoms is that of a trigonal bipyramid with the cationic phosphine ligands found in the axial positions and the iodide ligands arranged in the equatorial plane.  相似文献   

4.
Reaction of the potassium salt of N‐thiophosphorylated thiourea α‐naphthylNHC(S)NHP(S)(OiPr)2 ( HL ) with Cu(PPh3)3I in aqueous EtOH/CH2Cl2 leads to the mononuclear complex [Cu(PPh3)2L–S,S′]. By using copper(I) iodide instead ofCu(PPh3)3I, the polynuclear complex [Cun(L–S,S′)n] was obtained. The structures of these compounds were investigated by elemental analysis, 1H and 31P{1H} NMR and IR spectroscopy. The crystal structures of HL and Cu(PPh3)2L were determined by single‐crystal X‐ray diffraction.  相似文献   

5.
《化学:亚洲杂志》2018,13(15):1906-1910
A unique example of a ring‐to‐cage structural conversion in a multinuclear gold(I) coordination system with d ‐penicillamine (d ‐H2pen) is reported. The reaction of [Au2Cl2(dppe)] (dppe=1,2‐bis(diphenylphosphino)ethane) with d ‐H2pen in a 1:1 ratio gave [Au4(dppe)2(d ‐pen)2] ([ 1 ]), in which two [Au2(dppe)]2+ units are linked by two d ‐pen S atoms in a cyclic form so as to have two bidentate‐N,O coordination arms. The subsequent reaction of [ 1 ] with Cu(OTf)2 afforded [Au4Cu(dppe)2(d ‐pen)2]2+ ([ 2 ]2+), in which a CuII ion is chelated by the two coordination arms in [ 1 ] to form an AuI4CuII bicyclic metallocage. A similar reaction using Cu(NO3)2 was accompanied by the ring expansion of [ 1 ] to [Au8(dppe)4(d ‐pen)4], leading to the production of [Au8Cu2(dppe)4(d ‐pen)4]4+ ([ 3 ]4+). In [ 3 ]4+, two CuII ions are each chelated by the two coordination arms to form an AuI8CuII2 tricyclic metallocage, accommodating a nitrate ion. The use of Ni(NO3)2 or Ni(OAc)2 instead of Cu(NO3)2 commonly gave a tricyclic metallocage of [Au8Ni2(dppe)4(d ‐pen)4]4+ ([ 4 ]4+), but a water molecule was accommodated inside the AuI8NiII2 metallocage.  相似文献   

6.
A unique example of a hydrogen‐bonded ionic solid with a porosity of 80 %, [Co(H2O)6]3[Co2Au3(d ‐pen‐N,S)6]2 ( 1 ; d ‐H2pen=d ‐penicillamine), composed of [Co(H2O)6]2+ cations and [Co2Au3(d ‐pen‐N,S)6]3? anions, is reported. Solid 1 was kinetically produced and was then transformed stepwise into two more thermodynamically stable solids with lower porosities, [Co(H2O)4][Co(H2O)6]2[Co2Au3(d ‐pen‐N,S)6]2 ( 2 ) and [Co(H2O)4]3[Co2Au3(d ‐pen‐N,S)6]2 ( 3 ), through the coordination of the free carboxylate groups in [Co2Au3(d ‐pen‐N,S)6]3? to CoII centers. Solids 1 – 3 were structurally characterized, and the selective adsorption of small molecules into their pores was investigated.  相似文献   

7.
Aiming at a general methodology for binary co‐assembly of complexes of different metals through quasiracemate crystallization, the hexadentate ligand 1 comprised of the chiral bipyrrolidine core and two bipyridine peripheral arms is introduced. Ligand 1 was found to bind in a fully diastereoselective and uniform mode around ZnII, FeII and CdII giving coordinatively inert octahedral “chiral‐at‐metal” complexes with the Δ4Λ24Δ2 wrapping mode. Equimolar mixtures of quasienantiomeric pairs of these complexes exhibited a clear tendency to pack as quasiracemates as was revealed from the crystallographic structures of [(R,R)‐ 1 ‐Zn](PF6)2/[(S,S)‐ 1 ‐Fe](PF6)2 and [(R,R)‐ 1 ‐Zn](PF6)2/[(S,S)‐ 1 ‐Cd](PF6)2, in an isomorphous fashion to that of the racemic compound [rac‐ 1 ‐Zn](PF6)2 in space group C2/c.  相似文献   

8.
The nickel(II) N‐benzyl‐N‐methyldithiocarbamato (BzMedtc) complexes [Ni(BzMedtc)(PPh3)Cl] ( 1 ), [Ni(BzMedtc)(PPh3)Br] ( 2 ), [Ni(BzMedtc)(PPh3)I] ( 3 ), and [Ni(BzMedtc)(PPh3)(NCS)] ( 4 ) were synthesized using the reaction of [Ni(BzMedtc)2] and [NiX2(PPh3)2] (X = Cl, Br, I and NCS). Subsequently, complex 1 was used for the preparation of [Ni(BzMedtc)(PPh3)2]ClO4 ( 5 ), [Ni(BzMedtc)(PPh3)2]BPh4 ( 6 ), and [Ni(BzMedtc)(PPh3)2]PF6 ( 7 ). The obtained complexes 1 – 7 were characterized by elemental analysis, thermal analysis and spectroscopic methods (IR, UV/Vis, 31P{1H} NMR). The results of the magnetochemical and molar conductivity measurements proved the complexes as diamagnetic non‐electrolytes ( 1 – 4 ) or 1:1 electrolytes ( 5 – 7 ). The molecular structures of 4 and 5· H2O were determined by a single‐crystal X‐ray analysis. In all cases, the NiII atom is tetracoordinated in a distorted square‐planar arrangement with the S2PX, and S2P2 donor set, respectively. The catalytic influence of selected complexes 1 , 3 , 5 , and 6 on graphite oxidation was studied. The results clearly indicated that the presence of the products of thermal degradation processes of the mentioned complexes has impact on the course of graphite oxidation. A decrease in the oxidation start temperatures by about 60–100 °C was observed in the cases of all the tested complexes in comparison with pure graphite.  相似文献   

9.
A new metal–ligand bifunctional, pincer‐type ruthenium complex [RuCl( L1‐H2 )(PPh3)2]Cl ( 1 ; L1‐H2 =2,6‐bis(5‐tert‐butyl‐1H‐pyrazol‐3‐yl)pyridine) featuring two proton‐delivering pyrazole arms has been synthesized. Complex 1 , derived from [RuCl2(PPh3)3] with L1‐H2 , underwent reversible deprotonation with potassium carbonate to afford the pyrazolato–pyrazole complex [RuCl(L1‐H)(PPh3)2] ( 2 ). Further deprotonation of 1 and 2 with potassium hexamethyldisilazide in methanol resulted in the formation of the bis(pyrazolato) complex [Ru(L1)(MeOH)(PPh3)2] ( 3 ). Complex 3 smoothly reacted with dioxygen and dinitrogen to give the side‐on peroxo complex [Ru(L1)(O2)(PPh3)2] ( 4 ) and end‐on dinitrogen complex [Ru(L1)(N2)(PPh3)2] ( 5 ), respectively. On the other hand, the reaction of [RuCl2(PPh3)3] with less hindered 2,6‐di(1H‐pyrazol‐3‐yl)pyridine ( L3‐H2 ) led to the formation of the dinuclear complex [{RuCl2(PPh3)2}22‐ L3‐H2 )2] ( 6 ), in which the pyrazole‐based ligand adopted a tautomeric form different from L1‐H2 in 1 and the central pyridine remained uncoordinated. The detailed structures of 1 , 2 , 3 , 3.MeOH , 4 , 5 , 6 were determined by X‐ray crystallography.  相似文献   

10.
Treatment of (NH4)[Au(D‐Hpen‐S)2](D‐H2pen = D‐penicillamine) with CoCl2·6H2O in an acetate buffer solution, followed by air oxidation, gave neutral AuICoIII and anionic AuI3CoIII2 polynuclear complexes, [Au3Co3(D‐pen‐N,O,S)6]([ 1 ]) and [Au3Co2(D‐pen‐N,S)6]3? ([ 2 ]3?), which were separated by anion‐exchange column chromatography. Complexes [ 1 ] and [ 2 ]3? each formed a single isomer, and their structures were determined by single‐crystal X‐ray crystallography. In [ 1 ], each of three [Au(D‐pen‐S)2]3?metalloligands coordinates to two CoIII ions in a bis‐tridentate‐N,O,S mode to form a cyclic AuI3CoIII3 hexanuclear structure, in which three [Co(D‐pen‐N,O,S)2]? octahedral units and six bridging S atoms adopt trans(O) geometrical and R chiral configurations, respectively. In [ 2 ]3?, each of three [Au(D‐pen‐S)2]3? metalloligands coordinates to two CoIII ions in a bis‐bidentate‐N,S mode to form a AuI3CoIII2 pentanuclear structure, in which two [Co(D‐pen‐N,S)3]3? units and six bridging S atoms adopt ∧ and R chiral configurations, respectively.  相似文献   

11.
The sodium salt of [immucillin‐A–CO2H] (Imm‐A), namely catena‐poly[[[triaquadisodium(I)](μ‐aqua)[μ‐(1S)‐N‐carboxylato‐1‐(9‐deazaadenin‐9‐yl)‐1,4‐dideoxy‐1,4‐imino‐d ‐ribitol][triaquadisodium(I)][μ‐(1S)‐N‐carboxylato‐1‐(9‐deazaadenin‐9‐yl)‐1,4‐dideoxy‐1,4‐imino‐d ‐ribitol]] tetrahydrate], {[Na2(C12H13N4O6)2(H2O)7]·4H2O}n, (I), forms a polymeric chain via Na+—O interactions involving the carboxylate and keto O atoms of two independent Imm‐A molecules. Extensive N,O—H...O hydrogen bonding utilizing all water H atoms, including four waters of crystallization, provides crystal packing. The structural definition of this novel compound was made possible through the use of synchrotron radiation utilizing a minute fragment (volume ∼2.4 × 10−5 mm−3) on a beamline optimized for protein data collection. A summary of intra‐ring conformations for immucillin structures indicates considerable flexibility while retaining similar intra‐ring orientations.  相似文献   

12.
The reaction of Ru3(CO)10(dotpm) ( 1 ) [dotpm = (bis(di‐ortho‐tolylphosphanyl)methane)] and one equivalent of L [L = PPh3, P(C6H4Cl‐p)3 and PPh2(C6H4Br‐p)] in refluxing n‐hexane afforded a series of derivatives [Ru3(CO)9(dotpm)L] ( 2 – 4 ), respectively, in ca. 67–70 % yield. Complexes 2 – 4 were characterized by elemental analysis (CHN), IR, 1H NMR, 13C{1H} NMR and 31P{1H} NMR spectroscopy. The molecular structures of 2 , 3 , and 4 were established by single‐crystal X‐ray diffraction. The bidentate dotpm and monodentate phosphine ligands occupy equatorial positions with respect to the Ru triangle. The effect of substitution resulted in significant differences in the Ru–Ru and Ru–P bond lengths.  相似文献   

13.
3‐Deoxy‐3‐fluoro‐d ‐glucopyranose crystallizes from acetone to give a unit cell containing two crystallographically independent molecules. One of these molecules (at site A) is structurally homogeneous and corresponds to 3‐deoxy‐3‐fluoro‐β‐d ‐glucopyranose, C6H11FO5, (I). The second molecule (at site B) is structurally heterogeneous and corresponds to a mixture of (I) and 3‐deoxy‐3‐fluoro‐α‐d ‐glucopyranose, (II); treatment of the diffraction data using partial‐occupancy oxygen at the anomeric center gave a high‐quality packing model with an occupancy ratio of 0.84:0.16 for (II):(I) at site B. The mixture of α‐ and β‐anomers at site B appears to be accommodated in the lattice because hydrogen‐bonding partners are present to hydrogen bond to the anomeric OH group in either an axial or equatorial orientation. Cremer–Pople analysis of (I) and (II) shows the pyranosyl ring of (II) to be slightly more distorted than that of (I) [θ(I) = 3.85 (15)° and θ(II) = 6.35 (16)°], but the general direction of distortion is similar in both structures [ϕ(I) = 67 (2)° (BC1,C4) and ϕ(II) = 26.0 (15)° (C3TBC1); B = boat conformation and TB = twist‐boat conformation]. The exocyclic hydroxymethyl (–CH2OH) conformation is gg (gauchegauche) (H5 anti to O6) in both (I) and (II). Structural comparisons of (I) and (II) to related unsubstituted, deoxy and fluorine‐substituted monosaccharides show that the gluco ring can assume a wide range of distorted chair structures in the crystalline state depending on ring substitution patterns.  相似文献   

14.
On the Reactivity of Alkylthio Bridged 44 CVE Triangular Platinum Clusters: Reactions with Bidentate Phosphine Ligands The 44 cve (cluster valence electrons) triangular platinum clusters [{Pt(PR3)}3(μ‐SMe)3]Cl (PR3 = PPh3, 2a ; P(4‐FC6H4)3, 2b ; P(n‐Bu)3, 2c ) were found to react with PPh2CH2PPh2 (dppm) in a degradation reaction yielding dinuclear platinum(I) complexes [{Pt(PR3)}2(μ‐SMe)(μ‐dppm)]Cl (PR3 = PPh3, 3a ; P(4‐FC6H4)3, 3b ; P(n‐Bu)3; 3e ) and the platinum(II) complex [Pt(SMe)2(dppm)] ( 4 ), whereas the addition of PPh2CH2CH2PPh2 (dppe) to cluster 2a afforded a mixture of degradation products, among others the complexes [Pt(dppe)2] and [Pt(dppe)2]Cl2. On the other hand, the treatment of cluster 2a with PPh2CH2CH2CH2PPh2 (dppp) ended up in the formation of the cationic complex [{Pt(dppp)}2(μ‐SMe)2]Cl2 ( 5 ). Furthermore, the terminal PPh3 ligands in complex 3a proved to be subject to substitution by the stronger donating monodentate phosphine ligands PMePh2 and PMe2Ph yielding the analogous complexes [{Pt(PR3)}2(μ‐SMe)(μ‐dppm)]Cl (PR3 = PMePh2, 3c ; PMe2Ph, 3d ). NMR investigations on complexes 3 showed an inverse correlation of Tolmans electronic parameter ν with the coupling constants 1J(Pt,P) and 1J(Pt,Pt). All compounds were fully characterized by means of NMR and IR spectroscopy. X‐ray diffraction analyses were performed for the complexes [{Pt{P(4‐FC6H4)3}}2(μ‐SMe)(μ‐dppm)]Cl ( 3b ), [Pt(SMe)2(dppm)] ( 4 ), and [{Pt(dppp)}2(μ‐SMe)2]Cl2 ( 5 ).  相似文献   

15.
Herein, a unique coordination system that exhibits multiple chiral inversions and molecular dimerization in response to a subtle pH change is reported. Treatment of (Δ)2‐H3[Au3Co2(L ‐cys)6] (H3[ 1 a ]) with [Co3(aet)6](NO3)3 (aet=2‐aminoethanethiolate) in water at pH 7 gave a 1:1 complex salt of [Co3(aet)6]3+ and [ 1 a ]3?, retaining the AuI3CoIII2 structure and chiral configurations of [ 1 a ]3?. Similar treatment at pH 9 led to not only the inversion of all of the chiral CoIII and S centers but also the dimerization of [ 1 a ]3?, giving a 2:1 complex salt of [Co3(aet)6]3+ and (Λ)4(R)12‐[Au6Co4(L ‐cys)12]6? ([ 2 ]6?). When dissociated from [Co3(aet)6]3+ in solution, [ 2 ]6? was converted to (Λ)2(R)6‐[Au3Co2(L ‐cys)6]3? ([ 1 b ]3?) with retention of the chiral configurations.  相似文献   

16.
The complex trans,cis‐[RuCl2(PPh3)2(ampi)] (2) was prepared by reaction of RuCl2(PPh3)3 with 2‐aminomethylpiperidine(ampi) (1). [RuCl2(PPh2(CH2)nPPh2)(ampi) (n = 3, 4, 5)] (3–5) were synthesized by displacement of two PPh3 with chelating phosphine ligands. All complexes (2–5) were characterized by 1 H, 13C, 31P NMR, IR and UV‐visible spectroscopy and elemental analysis. They were found to be efficient catalysts for transfer hydrogen reactions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The aminophosphane ligand 1‐amino‐2‐(diphenylphosphanyl)ethane [Ph2P(CH2)2NH2] reacts with dichloridotris(triphenylphosphane)ruthenium(II), [RuCl2(PPh3)3], to form chloridobis[2‐(diphenylphosphanyl)ethanamine‐κ2P,N](triphenylphosphane‐κP)ruthenium(II) chloride toluene monosolvate, [RuCl(C18H15P)(C14H16NP)2]Cl·C7H8 or [RuCl(PPh3){Ph2P(CH2)2NH2}2]Cl·C7H8. The asymmetric unit of the monoclinic unit cell contains two molecules of the RuII cation, two chloride anions and two toluene molecules. The RuII cation is octahedrally coordinated by two chelating Ph2P(CH2)2NH2 ligands, a triphenylphosphane (PPh3) ligand and a chloride ligand. The three P atoms are meridionally coordinated, with the Ph2P– groups from the ligands being trans. The two –NH2 groups are cis, as are the chloride and PPh3 ligands. This chiral stereochemistry of the [RuCl(PPh3){Ph2P(CH2)2NH2}2]+ cation is unique in ruthenium–aminophosphane chemistry.  相似文献   

18.
The covalent radius of Au I is about 0.07 Å smaller than that of AgI. This was determined from the crystal structures of the isostructural complexes [N(PPh3)][{Au(C6F5)3(μ-PPh2)}2M] (M=Au (structure shown in the picture), Ag). These mixed AuIII–M phosphides were synthesized from [Au(C6F5)3(PPh2H)], the first gold complex to contain a secondary phosphane.  相似文献   

19.
The title compound, [Cu2(C9H10NO3)2(NO3)2(C10H8N2)(H2O)2]n, contains CuII atoms and l ‐tyrosinate (l ‐tyr) and 4,4′‐bipyridine (4,4′‐bipy) ligands in a 2:2:1 ratio. Each Cu atom is coordinated by one amino N atom and two carboxylate O atoms from two l ‐tyr ligands, one N atom from a 4,4′‐bipy ligand, a monodentate nitrate ion and a water molecule in an elongated octahedral geometry. Adjacent Cu atoms are bridged by the bidentate carboxylate groups into a chain. These chains are further linked by the bridging 4,4′‐bipy ligands, forming an undulated chiral two‐dimensional sheet. O—H...O and N—H...O hydrogen bonds connect the sheets in the [100] direction. This study offers useful information for the engineering of chiral coordination polymers with amino acids and 4,4′‐bipy ligands by considering the ratios of the metal ion and organic components.  相似文献   

20.
Triphenylphosphane Nickel(0) Complexes with Isocyanide Ligands — [(RNC)nNi(PPh3)4–n] (n = 1–3) Synthesis and properties of the isocyanide triphenylphosphane nickel(0) complexes [(RNC)Ni(PPh3)3], [(RNC)2Ni(PPh3)2] and [(RNC)3Ni(PPh3)] (R = tBu, Cy, PhCH2, p-TosCH2) are described. I.r. and 31P n.m.r. spectra were recorded and the X-ray crystal structure of [(PhCH2NC)2Ni(PPh3)2] was determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号