首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The DNA binding characteristics of mixed ligand complexes of the type [Co(en)2(L)]Br3 where en = N,N′-ethylenediamine and L = 1,10-phenanthroline (phen), 2,2′-bipyridine (bpy), 1,10-phenanthroline-5,6-dione (phendione), dipyrido[3,2-a:2′,3′-c]phenazine (dppz) have been investigated by absorption titration, competitive binding fluorescence spectroscopy and viscosity measurements. The order of intercalative ability of the coordinated ligands is dppz > phen > phendione > bpy in this series of complexes.  相似文献   

2.
Five new tridentate ligands and their corresponding La(III) complexes, [La(III)(L)2(H2O)n](ClO4)3 where n = 2,3 and 4; L is N-methyl-1,10-phenanthroline-2-methyleneamine (L1), N-ethyl-1,10-phenanthroline-2-methyleneamine (L2), N-propyl-1,10-phenanthroline-2-methyleneamine (L3), N-n-butyl-1,10-Phenanthroline-2-methyleneamine (L4), and N-benzyl-1,10-phenanthroline-2-methyleneamine (L5), have been synthesized, and characterized by elemental analysis, IR, far-IR, 1H-NMR, thermal gravity analysis and conductance measurement. The interaction of the lanthanum(III) complexes with calf thymus DNA was studied by means of UV, fluorescence, CD and viscosity measurements. Using ethidium bromide as a fluorescence probe, the binding mode of the complexes with calf thymus DNA was studied spectroscopically. All the results suggest that the complexes perhaps interact with calf thymus DNA by intercalative and coordination binding mode.  相似文献   

3.
Solid complexes of lighter lanthanide nitrates with N,N′-dinaphthyl-N,N′-diphenyl-3,6-dioxaoctanediamide (DDD), Ln(NO3)3(DDD) (Ln = La---Nd, Sm) have been prepared in non-aqueous media. These complexes have been characterized by elemental analysis, conductivity measurements, IR spectra, electronic spectra and TG-DTA techniques. In all the complexes, DDD and NO3 are coordinated to the lanthanide ions as tetradentate and bidentate ligands, respectively. The differences in the IR and electronic spectra between these complexes and lanthanide nitrate complexes with N,N,N′,N′-tetraphenyl-3,6-dioxaoctanediamide (TDD) are discussed.  相似文献   

4.
This paper presents examples of mixed-ligand Co(II), Cu(II), Ni(II) and Mn(II) complexes, with a distorted octahedral coordination geometry, with 2,2′-dipyridyl or 1,10-phenanthroline and phosphortriamide ligands. The complexes of the general type ML2·Lig (where M = Co(II), Cu(II), Ni(II), Mn(II); L = {Cl3C(O)NP(O)R2} (R = NHBz, NHCH2CHCH2, NEt2); Lig = 2,2′-dipyridyl or 1,10-phenanthroline) were synthesised and characterised by means of X-ray diffraction, IR and UV–Vis spectroscopy. The phosphortriamide ligands are coordinated via oxygen atoms of phosphoryl and carbonyl groups involved in six-membered metal cycles. The additional ligands 2,2′-dipyridyl or 1,10-phenanthroline are coordinated to the central atom, forming five-membered cycles.  相似文献   

5.
Peng Wang  Guo-Yi Zhu 《合成通讯》2013,43(22):4057-4064
Three bridging ligands (L) and their binuclear phenanthroline ruthenium(II) complexes {[Ru(1, 10-phenanthroline)2]2(L)}(PF6)4 were synthesized and characterized by IR, 1H NMR, and elemental analysis, where L are 1,8-adipoylamido-bis(1,10-phenanthroline-5-yl) (L1), 1,11-azelaoylamidobis(1,10-phenanthroline-5-yl) (L2), and p-phthaloylamido-bis(1,10-phenanthroline-5-yl) (L3).  相似文献   

6.
The interaction of lanthanide(III) ions with two N3O3-macrocycles, L1 and L2, derived from 2,6-bis(2-formylphenoxymethyl)pyridine and 1,2-diaminoethane has been investigated. Schiff-base macrocyclic lanthanide(III) complexes LnL1(NO3)3 · xH2O (Ln = Nd, Sm, Eu or Lu) have been prepared by direct reaction of L1 and the appropriate hydrated lanthanide nitrate. The direct reaction between the diamine macrocycle L2 and the hydrated lanthanide(III) nitrates yields complexes LnL2(NO3)3· H2O only for Ln = Dy or Lu. The reduction of the Schiff-base macrocycle decreases the complexation capacity of the ligand towards the Ln(III) ions. The complexes have been characterised by elemental analysis, molar conductivity data, FAB mass spectrometry, IR and, in the case of the lutetium complexes, 1H NMR spectroscopy.  相似文献   

7.
Two new phosphine oxide-functionalized 1,10-phenanthroline ligands, tetradentate 2,9-bis(butylphenylphosphine oxide)-1,10-phenanthroline (BuPh-BPPhen, L1 ) and tridentate 2-(butylphenylphosphine oxide)-1,10-phenanthroline (BuPh-MPPhen, L2 ), were synthesized and studied comparatively for their coordination with trivalent actinides and lanthanides. The complexation mechanisms of these two ligands toward trivalent f-block elements were thoroughly elucidated by NMR spectroscopy, UV/vis spectrophotometry, fluorescence spectrometry, single-crystal X-ray diffraction, solvent extraction, and theoretical calculation methods. NMR titration results demonstrated that 1 : 1 and 1 : 2 (metal to ligand) lanthanides complexes formed for L1 , whereas 1 : 1, 1 : 2 and 1 : 3 lanthanide complexes formed for L2 in methanol. The formation of these species was validated by fluorescence spectrometry, and the corresponding stability constants for the complexes of NdIII with L1 and L2 were determined by using UV/vis spectrophotometry. Structures of the 10-coordinated 1 : 1-type complexes of Eu L1 (NO3)3 and [Eu L2 (NO3)3(H2O)] Et2O in the solid state were characterized by X-ray crystallography. In solvent-extraction experiments, L1 exhibited extremely strong extraction ability for both AmIII and EuIII, whereas L2 showed nearly no extraction toward AmIII or EuIII due to its high hydrophilicity. Finally, the structures and bonding natures of the complex species formed between AmIII/EuIII and L1/L2 were analyzed in DFT calculations.  相似文献   

8.
《Polyhedron》1995,14(23-24)
New complexes of bivalent nickel with isopropylxanthates and nitrogen-donor ligands of composition [Ni(Prixa)2(L)], [Ni(Prixa)2(L1)2], [Ni(L2)2](Prixa)2, and [Ni(L3)3] (Prixa)2 have been synthesized, where Prixa = i-C3H7OCS2, L = 1,2-diaminopropane (1,2-pn), N,N,N′,N′=tetramethylethylenediamine (tmen) or 4,4′-bipyridine (4,4′-bipy), L1 = pyridine (py), L2 = diethylenetriamine (dien) and L3 = ethylenediamine (en), 1,2-diaminopropane or 1,10-phenanthroline (phen). The compounds have been characterized by elemental analysis, IR and UV-vis spectroscopy, magnetochemical measurements, molar conductivity and thermal analysis. The compounds containing the complex cation have been one-electron irreversibly oxidized using cyclic voltammetry. The crystal and molecular structures of [Ni(Prixa)2(tmen)] and [Ni(phen)3](Prixa)2 have been elucidated.  相似文献   

9.
Three novel unsymmetric tridentate ligands, namely, ptmi (ptmi = 3-(1,10-phenanthroline-2-yl)-as-triazino[5,6-f]-5-methoxyisatin), pti (pti = 3-(1,10-phenanthroline-2-yl)-as-triazino-[5,6-f]isatin), ptni (ptni = 3-(1,10-phenanthroline-2-yl)-as-triazino[5,6-f]-5-nitroisatin), and their complexes [Ru(tpy)(ptmi)](ClO4)2 (tpy = 2,2′:6′,2″-terpyridine) (1), [Ru(tpy)(pti)](ClO4)2 (2), and [Ru(tpy)(ptni)](ClO4)2 (3) were prepared and characterized by elemental analysis, 1H NMR, ES–MS. The electrochemical behaviors were studied by cyclic voltammetry. The DNA-binding properties of these complexes were investigated by the spectroscopic method, viscosity measurements, and thermal denaturation. Theoretical studies on these complexes were also performed with the density functional theory (DFT) method. The experimental results showed that these complexes bind to calf thymus (CT-DNA) in an intercalative mode. The order of DNA-binding affinities (A) of these complexes is A(1) < A(2) < A(3). The trend in the DNA-binding affinities of this series of complexes can be reasonably explained by the DFT calculations.  相似文献   

10.
The hepta- and octa-dentate ligands N,N′-bis(2-aminobenzyl)-1,10-diaza-15-crown-5 (L1) and N,N′-bis(2-aminobenzyl)-1,10-diaza-18-crown-6 (L2), respectively, form stable mononuclear Mn(II) complexes. Spectrophotometric titrations performed in acetonitrile solution indicate the formation of mononuclear Mn(II) complexes with both ligands, and no evidence for the formation of binuclear complexes was obtained. The optimal architecture of L1 allows it to impose the less usual pentagonal bipyramidal geometry on the Mn(II) guest, and the X-ray crystal structure of [Mn(L1)](ClO4)2 shows that the Mn(II) ion is deeply buried in the receptor cavity, coordinated to the seven available donor atoms, with the perchlorate anions remaining outside the metal coordination sphere. In spite of its higher denticity, the receptor L2 is unable to form the expected binuclear complexes. The X-ray crystal structure of [Mn(L2)](NO3)2 consists of the [Mn(L2)]2+ cation and nitrate anions involved in hydrogen-bonding interactions with the aniline groups. In [Mn(L2)]2+ the metal ion is also placed in the crown hole, but as a result of the large size of the macrocyclic cavity only six of the eight available donor atoms of the receptor form part of the Mn(II) coordination sphere, with the Mn(II) ion found in a distorted octahedral coordination environment.  相似文献   

11.
Three new Cu(II) supramolecular complexes [Cu(L1)Cl2]·2DMF (1), [Cu(L2)Cl2] (2) and [Cu(L3)Cl2]·DMF (3) (L1 = 3,3′-bis(2-benzimidazolyl)-2,2′-dipyridine, L2 = 3,3′- bis(N-ethyl-2-benzimidazolyl)-2,2′-dipyridine and L3 = 3,3′-bis(N-benzyl-2-benzimidazolyl)-2,2′-dipyridine) have been prepared and characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. X-ray structural analysis of L1, L2·3.5H2O and L3·H2O indicates that all three ligands adopt the trans conformation with the two benzimidazole fragments located on opposite sides of the dipyridyl backbone. While in complexes 13, all the ligands display the cis conformation and behave as bidentate chelating reagents to coordinate with Cu(II). The inorganic chloride ions always act as a reliable hydrogen bonded acceptor in these structures, and the resulting C–HCl2Cu supramolecular synthons play a significant role in the formation and stabilization of the structures. Moreover, additional non-covalent interactions, such as C–Hπ, are also identified to extend the discrete (0-D) or low-dimensional (1-D) motifs into high-dimensional architectures.  相似文献   

12.
The synthesis of a new Schiff base containing 1,10-phenanthroline-2,9-dicarboxaldehyde and 2-aminobenzenethiol subunits is described. The reaction of 1,10-phenanthroline-2,9-dicarboxaldehyde with 2-aminobenzenethiol leads to the isolation of 2,9-bis(2-benzothiazolinyl)-1,10-phenanthroline (I) which undergoes rearrangement when reacted with cobalt, nickel, copper or zinc ions to produce complexes of the tautomeric Schiff base 2,9-bis[2-(2-mercaptophenyl)-2-azaethene]-1,10-phenanthroline (L). The [Cu(L)ClO4][ClO4] and [M(L)X2] complexes (where M = Co(II), Ni(II) and Zn(II) and X = Br) were characterized by physical and spectroscopic measurements which indicated that the ligand is acting probably as a tetradentate N4 chelating agent.  相似文献   

13.
The reaction of 2-phosphorylalkyl-substituted 1,8-naphthyridines, viz., 2-[2-(diphenylphosphoryl)propan-2-yl]-1,8-naphthyridine (L 1 ) and 2-[2-(diphenylphosphoryl)ethyl]-1,8-naph-thyridine (L 2 ), with lanthanide nitrates (Nd, Eu, or Lu) afforded complexes with the metal-to-ligand molar ratio of 1: 1 and 1: 2. Based on the IR and Raman spectroscopic data, it was found that the coordination of the ligands L 1 and L 2 in all complexes occurs through the P=O group and the nitrogen atoms of the naphthyridine moiety.  相似文献   

14.
Guo  Yanhe  Ge  Qingchun  Lin  Hai  Lin  Huakuan  Zhu  Shourong 《Transition Metal Chemistry》2003,28(6):668-675
The ligands 1,10-N,N-bis(2-hydroxymethylbenzoyl)-1,4,7,10-tetraazadecane (L1) and 1,11-N,N-bis(2-hydroxymethylbenzoyl)-1,4,8,11-tetraazaundecane (L2) have been synthesized. The stability constants of NiII complexes of ligands L1 and L2 have been studied at 25 °C using pH titrations. The kinetics of general acid (HCl, 0.04–2.34 mol dm–3) or buffer (DEPP or DESPEN, 0.05 mol dm–3, pH 4.83–5.72)-catalyzed dissociation of these NiII complexes have been investigated at 25 °C using a stopped-flow spectrophotometer. The ionic strength of solution was controlled at I = 2.34 mol dm–3 (KCl + HCl) and I = 0.1 mol dm–3 (KNO3, buffer), respectively. The kinetic dissociation of NiII complexes catalyzed by HCl obeys the equilibrium k obs = k 1d + k 2H[H+], whereas in buffer solution the observed rate constant k obs = k d + k 1H[H+]. At pH < 1.5, both the proton-assisted and direct protonation pathways contribute to the rates, whereas solvation is the dominant pathway at pH > 6. In the 4.8–5.7 pH range, the complexes dissociate mainly through a proton-assisted pathway.  相似文献   

15.
Three new potentially hexadentate N4O2 Schiff-base ligands (H2L1, H2L2 and H2L3) were prepared from the reaction of the polyamines N,N′-bis(2-aminophenyl)-1,2-ethanediamine (L1), N,N′-bis(2-aminophenyl)-1,3-propanediamine (L2) and N,N′-bis(2-aminophenyl)-1,4-butanediamine (L3), respectively with salicylaldehyde. Reaction of the Schiff bases with Ni(II) salts in the presence of N(Et)3 gave the neutral complexes [NiL4], [NiL5] and [NiL6]. Ni(II) complexes of the polyamines were also prepared. One of complexes [Ni(L1)(MeCN)2](ClO4)2·MeCN has been characterized through X-ray diffraction methods.  相似文献   

16.
Four ternary complexes of Tb(III) were synthesized by introducing the first ligand (L1) (N-phenylanthranilic acid (N-HPA), α-furoic acid (FURA)) and the second ligand (L2) (1,10-phenanthroline (Phen), 2,2′-dipyridyl (Bipy)), respectively. These complexes were characterized by elemental analysis, infrared spectra, XRD, UV spectra and fluorescence spectra. The effect of L1 and L2 on the fluorescence properties of terbium complexes was discussed. It showed that all the complexes exhibited ligand-sensitized green emission. The fluorescent intensity increased in the sequence of Tb(FURA)3Bipy < Tb(N-PA)3Phen < Tb(FURA)3Phen < Tb(N-PA)3Bipy. It indicated that L1 affected fluorescence properties of the complexes differently when the corresponding L2 altered. Meanwhile, the influence of L2 on the luminescence properties of the complexes also depends on L1. The results showed that L1 and L2 affected each other and worked together as a whole. The matching of L1, L2 and Tb3+ ion is very important to the luminescence properties of Tb(III) ternary complexes.  相似文献   

17.
This paper reports on the synthesis and characterization of two new polypyridyl-hydrazone Schiff bases, (E)-N′-(6-oxo-1,10-phenanthrolin-5(6H)-ylidene)thiophene-2-carbohydrazide (L1) and (E)-N′-(6-oxo-1,10-phenanthrolin-5(6H)-ylidene)furan-2-carbohydrazide (L2), and their two Ru(II) complexes of the general formula [RuCl(DMSO)(phen)(Ln)](PF6). Considering that hydrazides are a structural part of severa l drugs and metal complexes containing phenanthroline derivatives are known to interact with DNA and to exhibit antitumor activity, more potent anticancer agents can be obtained by covalently linking the thiophene acid hydrazide or the furoic acid hydrazide to a 1,10-phenanthroline moiety. These ligands and the Ru(II) complexes were characterized by elemental analyses, electronic, vibrational, 1H NMR, and ESI-MS spectroscopies. Ru is bound to two different N-heterocyclic ligands. One chloride and one S-bonded DMSO in cis-configuration to each other complete the octahedral coordination sphere around the metal ion. The ligands are very effective in inhibiting cellular growth in a chronic myelogenous leukemia cell line, K562. Both complexes are able to interact with DNA and present moderate cytotoxic activity, but 5 min of UV-light exposure increases cytotoxicity by three times.  相似文献   

18.
The stability constants of complexes of 12-, 15-, and 18-membered diaza crown ethers, N,N′-dimethyl diaza crown ethers, and N,N′-bis(2-hydroxyethyl) diaza crown ethers with alkali and alkaline-earth metal ions in 95% aqueous methanol at 25°C were determined. The stability of the complexes of unsubstituted diaza crown ethers with alkali metal cations is low, probably because of stabilization of the exo,exo conformation of the ligands due to interaction of the nitrogen lone electron pairs with the solvent. The complexes with the double-charged cations are appreciably more stable. N,N′-Dimethyl diaza crown ethers form stable complexes with all the ions studied. As compared to the dimethyl derivatives, N,N′-bis(2-hydroxyethyl) diaza crown ethers form more stable complexes with the Na+, K+, Ca2+, Sr2+, and Ba2+ ions, which is due to participation of the side hydroxyethyl groups in the coordination.__________Translated from Zhurnal Obshchei Khimii, Vol. 75, No. 4, 2005, pp. 665–669.Original Russian Text Copyright © 2005 by Kulygina, Vetrogon, Basok, Luk’yanenko.  相似文献   

19.
The imidazolium salts 1,1′-dibenzyl-3,3′-propylenediimidazolium dichloride and 1,1′-bis(1-naphthalenemethyl)-3,3′-propylenediimidazolium dichloride have been synthesized and transformed into the corresponding bis(NHC) ligands 1,1′-dibenzyl-3,3′-propylenediimidazol-2-ylidene (L1) and 1,1′-bis(1-naphthalenemethyl)-3,3′-propylenediimidazol-2-ylidene (L2) that have been employed to stabilize the PdII complexes PdCl22-C,C-L1) (2a) and PdCl22-C,C-L2) (2b). Both latter complexes together with their known homologous counterparts PdCl22-C,C-L3) (1a) (L3 = 1,1′-dibenzyl-3,3′-ethylenediimidazol-2-ylidene) and PdCl22-C,C-L4) (1b) (L4 = 1,1′-bis(1-naphthalenemethyl)-3,3′-ethylenediimidazol-2-ylidene) have been straightforwardly converted into the corresponding palladium acetate compounds Pd(κ1-O-OAc)22-C,C-L3) (3a) (OAc = acetate), Pd(κ1-O-OAc)22-C,C-L4) (3b), Pd(κ1-O-OAc)22-C,C-L1) (4a), and Pd(κ1-O-OAc)22-C,C-L2) (4b). In addition, the phosphanyl-NHC-modified palladium acetate complex Pd(κ1-O-OAc)22-P,C-L5) (6) (L5 = 1-((2-diphenylphosphanyl)methylphenyl)-3-methyl-imidazol-2-ylidene) has been synthesized from corresponding palladium iodide complex PdI22-P,C-L5) (5). The reaction of the former complex with p-toluenesulfonic acid (p-TsOH) gave the corresponding bis-tosylate complex Pd(OTs)22-P,C-L5) (7). All new complexes have been characterized by multinuclear NMR spectroscopy and elemental analyses. In addition the solid-state structures of 1b·DMF, 2b·2DMF, 3a, 3b·DMF, 4a, 4b, and 6·CHCl3·2H2O have been determined by single crystal X-ray structure analyses. The palladium acetate complexes 3a/b, 4a/b, and 6 have been employed to catalyze the oxidative homocoupling reaction of terminal alkynes in acetonitrile chemoselectively yielding the corresponding 1,4-di-substituted 1,3-diyne in the presence of p-benzoquinone (BQ). The highest catalytic activity in the presence of BQ has been obtained with 6, while within the series of palladium-bis(NHC) complexes, 4b, featured with a n-propylene-bridge and the bulky N-1-naphthalenemethyl substituents, revealed as the most active compound. Hence, this latter precursor has been employed for analogous coupling reaction carried out in the presence of air pressure instead of BQ, yielding lower substrate conversion when compared to reaction performed in the presence of BQ. The important role of the ancillary ligand acetate in the course of the catalytic coupling reaction has been proved by variable-temperature NMR studies carried out with 6 and 7′ under catalytic reaction conditions.  相似文献   

20.
Three new vic-dioxime ligands, [N-(ethyl-4-amino-1-piperidine carboxylate)-phenylglyoxime (L1H2), N-(ethyl-4-amino-1-piperidine carboxylate)-glyoxime (L2H2), and N,N′-bis(ethyl-4-amino-1-piperidine carboxylate)-glyoxime (L3H2)], and their Co(II) with Cu(II) metal complexes, were synthesized for the first time. Mononuclear complexes of these ligands with a 1:2 metal-ligand ratio were prepared with Co(II) and Cu(II) salts. The BF2+-capped Co(II) and mononuclear complexes of the vic-dioxime were prepared for [Co(L1·BF2)2] and [Co(L2·BF2)2]. The ligands act in a polydentate fashion bonding through nitrogen atoms in the presence of a base, as do most vic-dioximes. The cobalt(II) and copper(II) complexes are non-electrolytes as shown by their molar conductivities (ΛM) in DMF. The structures of the ligands and complexes were determined by elemental analyses, FT-i.r., u.v.–vis., 1H- and 13C-n.m.r. spectra, magnetic susceptibility measurements, and molar conductivity. The comparative electrochemical studies show that the stabilities of the reduced or oxidized species and the electrode potentials of the complexes are affected by the substituents attached on the oxime moieties of the complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号