首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantum theories of elementary heterogeneous electron transfer (ET) reactions in polar media have recently been extended to reactions which proceed through active intermediate electronic surface states or bands. On the basis of this theoretical framework — which is equivalent to inelastic tunnelling processes with strong phonon coupling — experimental data for the electrochemical reduction of molecular oxygen on various carbon-supported metal phthalocyanines have been analyzed. The data are compatible with a mechanism in which at first ET from catalyst to oxygen occurs followed by ET from carbon to catalyst. Furthermore, excitation of high-frequency intramolecular modes is important.  相似文献   

2.
3.
Through electrostatic layer-by-layer (LBL) assembly, negatively charged citrate-stabilized platinum nanoparticles (PtNPs) and positively charged [tetrakis(N-methylpyridyl)porphyrinato] cobalt were alternately deposited on a 4-aminobenzoic acid-modified glassy carbon electrode and also on indium tin oxide substrates, directly forming the three-dimensional nanostructured materials. Thus-prepared multilayer films were characterized by UV--visible spectroscopy, surface plasmon resonance (SPR) spectroscopy, atomic force microscopy (AFM), and cyclic voltammetry. Regular growth of the multilayer films is monitored by UV--visible spectroscopy and SPR spectroscopy. AFM provides the morphology of the multilayer films. The PtNPs containing multilayer films exhibit high electrocatalytic activity for the reduction of dioxygen with high stability. Rotating disk electrode voltammetry and rotating ring-disk electrode voltammetry demonstrate that the PtNP-containing multilayer films can catalyze an almost four-electron reduction of O(2) to H(2)O in an air-saturated 0.5 M H(2)SO(4) solution. Furthermore, the electrocatalytic activity of the films could be further tailored by simply choosing different cycles in the LBL process or more specifically the amount of the assembly components in the films. The high electrocatalytic activity and good stability for dioxygen reduction make the PtNP-containing multilayer films potential candidates for the efficient cathode material in fuel cells.  相似文献   

4.
Urea electrolysis is an up-and-coming approach to realize sustainable energy-saving hydrogen fuel production and purification of urea-bearing wastes (e.g. urine, industrial wastewater). To attain a high urea electrolysis efficiency, high-performance electrocatalysts are highly required. Of late, transition metal (TM) chalcogenides-based materials are emerging as promising candidates for urea electrolysis. The catalytic performance of TM chalcogenides-based catalysts is optimized by tuning the internal/external characteristics, including nanostructure control, composition optimization, and heterostructuring. In this review, recent achievements in high-efficiency electrocatalysts based on TM chalcogenides for urea electrolysis are critically discussed. First, the electrochemistry of urea electrolysis is analyzed. Next, recent progress in TM chalcogenides-based electrocatalysts for urea electrolysis is detailed. The electrocatalyst design strategies are particularly elucidated, as well as the catalyst structure–performance correlation. Ultimately, perspectives on crucial scientific issues in this booming field are highlighted.  相似文献   

5.
A novel method based on electrostatic layer-by-layer self-assembly (LBL) technique for alternate assemblies of polyelectrolyte functionalized multi-walled carbon nanotubes (MWNTs) and platinum nanoparticles (PtNPs) is proposed. The shortened MWNTs can be functionalized with positively charged poly(diallyldimethylammonium chloride) (PDDA) based on electrostatic interaction. Through electrostatic layer-by-layer assembly, the positively charged PDDA functionalized MWNTs (PDWNTs) and negatively charged citrate-stabilized PtNPs were alternately assembled on a 3-mercaptopropanesulfonic sodium (MPS) modified gold electrode and also on other negatively charged surface, e.g. quartz slide and indium–tin-oxide (ITO) plate, directly forming the three-dimensional (3D) nanostructured materials. This is a very general and powerful technique for the assembling three-dimensional nanostructured materials containing carbon nanotubes (CNTs) and nanoparticles. Thus prepared multilayer films were characterized by ultraviolet–visible–near-infrared spectroscopy (UV–vis–NIR), scanning electron microscopy (SEM) and cyclic voltammetry (CV). Regular growth of the mutilayer films is monitored by UV–vis–NIR. SEM provides the morphology of the multilayer films. The PtNPs containing multilayer films exhibit high electrocatalytic activity for the reduction of dioxygen. Furthermore, the electrocatalytic activity of the films could be further tailored by simply choosing different cycles in the LBL process. This assembling method for polyelectrolyte functionalized carbon nanotubes and nanoparticles introduces new opportunities for the incorporation of various functionalities into nanotube devices, which, in turn, opens up the possibility of building more complex multicomponent nanostructures.  相似文献   

6.
7.
Journal of Solid State Electrochemistry - The oxygen reduction reaction (ORR) is a highly important reaction in electrochemistry. The following short review details recent advances in novel...  相似文献   

8.
The field of molecular machines, i.e. multicomponent systems able to undergo large amplitude motions under the action of an external signal, has experienced a spectacular development since the beginning of the 1990s. Transition metal complexes have played an important role in this context, often as components of catenanes and rotaxanes. The present tutorial review will discuss a few systems of this type, taken from the contributions of our group or from others. The stimulus responsible for the controlled motion of the machine can be chemical, electrochemical, or photochemical. Examples of these three categories will be considered.  相似文献   

9.
10.
A promising material in medicine, electronics, optoelectronics, electrochemistry, catalysis, and photophysics, tetrasulphonated aluminum phthalocyanine (AlPcS(4)), is investigated by means of steady-state and time-resolved pump-probe spectroscopies. Absorption and steady-state fluorescence spectroscopy indicate that AlPcS(4) is essentially monomeric. Spectrally resolved pump-probe data are recorded on time scales ranging from femtoseconds to nanoseconds. The nature of these fast processes and pathways of the competing relaxation processes from the initially excited electronic states in aqueous and organic (dimethyl sulfoxide) solutions are discussed. The decays and bleaching recovery have been fitted in the ultrafast window (0-10 ps) and later time window extending to nanoseconds (0-1 ns). While the excited-state dynamics have been found to be sensitive to the solvent environment, we were able to show that the fast dynamics is described by three time constants in the ranges of 115-500 fs, 2-25 ps, and 150-500 ps. We were able to ascribe these three time constants to different processes. The shortest time constants have been assigned to vibrational wavepacket dynamics. The few picosecond components have been assigned to vibrational relaxation in the excited electronic states. Finally, the 150-500 ps components represent the decay from S(1) to the ground state. The experimental and theoretical treatment proposed in this paper provides a basis for a substantial revision of the commonly accepted interpretation of the Soret transition (B transition) that exists in the literature.  相似文献   

11.
The synthesis and spectroscopic characterization of cobalt(Ⅱ) 5-(4-pyridyl)-10,15,20-triphe-nylporphyrin,cobalt(Ⅱ) 5-(4-N-hexadecylpyridiniumyl)-10,15,20-triphenylporphyrin bromide andcobalt(Ⅱ) 5-(2-aminophenyl)-10,15,20-triphenyl-porphyrin are reported.The corresponding copperand vanadyl derivatives ((TriP)Cu,[(hTriP)Cu]~+Br~- and [(hTriP)VO]~+Br~-) were also studied.Eachmetalloporphyrin was characterized by UV-visible,ESR and ~1H NMR spectroscopy.These me-talloporphyrins can be firmly adsorbed on the glassy carbon (GC) surface.The catalytic reduction ofdioxygen at GC electrodes modified by these catalysts was studied by cyclic voltammetry (CV).Thekinetic process of dioxygen reduction at the cobalt porphyrin-modified electrodes was studied with arotating ring disk electrode.  相似文献   

12.
Pd-Fe nanoparticles as electrocatalysts for oxygen reduction   总被引:1,自引:0,他引:1  
We have synthesized new electrocatalysts for the O2 reduction reaction that does not contain Pt. They consist of carbon-supported Pd-Fe alloys and have very high oxygen reduction. The nanoparticles with a Pd:Fe molar ratio of 3:1 (Pd3Fe/C) show a higher mass activity than that of commercial Pt/C. The surface-specific activity of the Pd-Fe alloys is related to the Pd-Pd bond distance: the shorter the bond distance, the higher the activity. This new class of electrocatalysts promises to alleviate some major problems of existing fuel cell technology by simultaneously decreasing materials cost and enhancing performance.  相似文献   

13.
The rotating ring disk electrode method has been used to study O2 electroreduction with metal corroles. Catalysis begins at potentials that are 0.5-0.7 V more positive than the expected potential of the M(III/II) couple based on studies in non-aqueous solutions. The path of O2 reduction depends on the nature of the metal ion. Cobalt corroles promote O2 reduction to H2O2. Iron corroles catalyse O2 reduction via parallel two- and four-electron pathways, with a predominate four-electron reaction. The rate constants for the individual O2 reduction paths are given at pH 7. Mechanisms are proposed on the basis of pH dependence, inhibition studies, and Tafel slopes. An imidazole-tailed iron corrole catalyses H2O2 disproportionation analogous to catalase.  相似文献   

14.
15.
Three novel series of the binuclear metal phthalocyanines M2Pc2, M2Pc2Hc, and M2Nc2 (M?=?Mn(II), Fe(II), Co(II), Ni(II), and Cu(II)) were synthesized and characterized. The electrocatalytic performance of the binuclear compounds to lithium–thionyl chloride battery was evaluated by operating these compounds in the electrolyte of the battery. The results indicated that the binuclear metal phthalocyanines improved the capacity of the battery by an increase of approximately 30–58 %. Of all, Cu2Pc2Hc and Fe2Nc2 displayed the highest increments of 56 and 57 %, respectively.  相似文献   

16.
17.
18.
19.
Features of a new family of catalytic systems which represent transition metal chelates entrapped within zeolite matrices are discussed. There exists strong similarity between the behavior of these catalysts and that of natural enzymes.  相似文献   

20.
Wang YH  Zhang MH  Yan YM  Bian GQ  Zhu QY  Dai J 《Inorganic chemistry》2010,49(21):9731-9733
Tn clusters are usually connected into frameworks by sulfur bridges. A new type of T4 compounds in which the clusters are linked by both sulfur bridges and transition metal complexes are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号