首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The limiting molar conductances Λ0 of potassium deuteroxide KOD in D2O and potassium hydroxide KOH in H2O were determined at 25°C as a function of pressure to disclose the difference in the proton-jump mechanism between an OH? (OD?) and a H3O+ (D3O+) ion. The excess conductance of the OD? ion in D2O λ E O (OD -), as estimated by the equation $$\lambda _E^O (OD^ - ) = \Lambda ^O (KOD/D_2 O) - \Lambda ^O (KCl/D_2 O)$$ increases a little with pressure as well as the excess conductance of the OH? ion in H2O $$\lambda _E^O (OH^ - ) = \Lambda ^O (KOH/H_2 O) - \Lambda ^O (KCl/H_2 O)$$ However, their rates of increase with pressure are much smaller than those of the excess deuteron and proton conductances, λ E O (D +) and λ E O (H +). With respect to the isotope effect on the excess conductance, λ E O (OH -)/λ E O (D +) decreases with presure as in the case of λ E O (H +)/λ E O (D +), but the value of λ E O (OH -)/λ E O (OD -) itself is much larger than that of λ E O (H +)/λ E O (D +) at each pressure. These results are ascribed to the difference in the pre-rotation of water molecules, which is brought about by the difference in the intial orientation of the rotating water molecule adjacent to the OH? (OD?) or the H3O+ (D3O+) ion.  相似文献   

2.
Photofragment spectroscopy of N 2 + has been studied in the wavelength range 343–404 nm using an excimer-pumped dye laser with a spectral resolution of 0.2 cm?1. The observed bands are assigned to transitions from thev″=23?26 levels of theX 2Σ g + state to highlying rovibrational levels (v′≈46–48) of theB 2Σ u + state, forming quasibound (predissociating) states above the dissociation limit N+(3 P)+N(4 S 0). Measurement of the photofragment kinetic energies allows to establish an absolute energy scale for the transitions with respect to the dissociation limit. Molecular constants for the lower and upper states of the observed transitions are determined. The measurements allow the first direct determination of the N 2 + dissociation energyD 0 0 (N 2 + ). Some high-resolution (0.04 cm?1) measurements show the fine-structure splitting and lifetime broadening of the excitation lines.  相似文献   

3.
The complex[Bi2(Tu)6(ClO4)4](ClO4)2 (I) (Tu is thiourea) was synthesized and studied by X-ray diffraction. The crystallographic data of I are: a = 14.205(1) Å, b = 13.083(1) Å, c = 22.078(2) Å, β = 96.182(1)°, V = 4079.1(7) Å3, space group C2/c, Z = 4. The molecule is located on a twofold axis and consists of the binuclear cation [Bi2(Tu)6(ClO4)4]2+ and two outer-sphere anions Cl 4 ? . The Bi-S bond lengths are 2.61–2.62 Å. For each terminal and bridging ClO 4 ? ion, one Bi-O distance varies from 2.744 to 3.048 3.269 structure contains a hydrogen bond network involving all hydrogen atoms. The IR and Raman spectroscopy data confirm the thiourea coordination by the sulfur atom.  相似文献   

4.
This work reports the principle, advantage, and limitations of analytical photoion spectroscopy which has been applied to dissociative photoionization processes for diatomic molecules such as H2, N2, CO, and NO. Characteristic features observed in the differential photoion spectra are summarized with a focus on (pre)dissociation of(i) multielectron excitation states commonly observed in the inner valence regions,(ii) shape resonances, and(iii) doubly charged parent ions. Possible origins for negative peaks in the differential spectra are discussed. This spectroscopy is applied to the reported photoion branching ratios for D2 (and H2 at high energies). The main findings are as follows: (1) The direct dissociation of theX 2Σ g + (1sσ g ) state of D 2 + , the two-electron excited state1Σ u + (2pσ u 2sσ g ) of D2, and the2Σ u + (2pσ u ) state of D 2 + appear clearly in the differential spectrum, as previously observed for H2. (2) Decay of H 2 + (D 2 + ) to H+ (D+) above 38 eV is due to the direct dissociation of highly excited states of H 2 + (D 2 + ) such as the2Σ g + (2sσ g ) and high-lying Rydberg states converging on H 2 2+ (D 2 2+ ). (3) In the ionization continuum of H 2 2+ (D 2 2+ ) peculiar dissociation pathways are observed. The differential photoion spectra for O2 derived from the reported photoion branching ratios are also presented. The (pre)dissociation of theb 4Σ g ? ,B 2Σ g ? , III2Π u ,2Σ u ? , and2,4Σ g ? states of O 2 + appears as the corresponding positive values in the spectra in accord with previous observations. Some other dissociation pathways possibly contributing to the spectra are discussed including dissociative double ionization.  相似文献   

5.
A method is proposed for the selective photometry determination of perchlorates in potable water with a detection limit of 2×10?3 mg/L is proposed based on the extraction of its ion pair with the astrafloxin cation and absorbance measurements at 540 nm. The following ratios of matrix ions are acceptable (in parentheses): ClO?, ClO 2 ? , ClO 3 ? , BrO 3 ? (500); I? (1000); IO 3 ? (7000); HCO 3 ? , Cl?,SO 4 2? , NO 3 ? , Br?, Na+, K+, Ca2+, Mg2+ (10000). The relative error of determination for ClO 4 ? is 20% in the range 4 × 10-3-1 × 10?2 mg/L and 10% in the range 1 × 10-2–5 × 10?2 mg/L.  相似文献   

6.
A hydrated crystalline ionized adduct of dibenzo-18-crown-6 and perchloric acid DB18C6 · H3O+ · CiO 4 ? · 3H2O (I) is synthesized and characterized by X-ray diffraction. The crystals of I are monoclinic: a = 17.760 Å, b = 12.922 Å, β = 124.27°, Z = 4, space group Cc. The structure of I is solved by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.079 for 3294 independent reflections (CAD4 automated diffractometer, λMoK α radiation). A DB18C6 molecule has a butterfly conformation with the rough symmetry C 2v . An H3O+ · H2O dimer is situated on one side of the DB18C6 macrocycle, and the ClO 4 ? anion and two other water molecules are on the other side. In the crystal of I, the DB18C6 molecules, H3O+ and ClO 4 ? ions, and water molecules are linked through intermolecular (interionic) hydrogen bonds to form broad infinite chains running along the z axis.  相似文献   

7.
The magnesium sulphate complex compounds of general formulae [Mg(H2O)6]2+·2(C6H12N4)·SO4 2?·5(H2O) (1) and Mg(C12H8N2)(H2O)3SO4 (2) have been synthesized, characterised by elemental and thermal analysis, IR, UV?CVIS and fluorescence spectroscopy, and X-ray crystallography. The obtained compounds are air stable at room temperature and well soluble in water. In the structures of the investigated complex compounds the O?CH?O, O?CH?N, and C?CH?O hydrogen bonds exist, and they create N2C 2 2 (8), R 2 2 (8) (compound 1) and N1C 1 1 (6), N1R 2 2 (12) (compound 2) patterns. Their thermal decomposition processes in the investigated atmospheres (air and helium) are different. After the slightly similar dehydratation, the observed transitions and the obtained final products are different (in helium atmosphere the sulphate ion of studied compounds undergoes decomposing what does not take place in air atmosphere). The UV?CVIS spectrum of 2 shows maxima that are typical for ????????* and n??????* transitions, and fluorescence spectrum of the same compound displays its great fluoresce properties. The 1 does not exhibit absorption in the investigated region of electromagnetic spectrum due to the absence of respect chromophore groups. The IR spectrum of 2 shows typical vibrations for chelating amine molecule. An interesting fact is that in 1 the SO stretching vibrations (existing at 1119 and 1182?cm?1) are doubled in comparison to the magnesium sulphate whilst in 2 these vibrations are absent.  相似文献   

8.
By treatment of 1,3-bis(3,4-dimethoxybenzyl)-3,4,5,6-tetrahydropyrimidinium chloride (1) with KOBu t and [PtCl2(PEt3)2]2 N-coordinated platinum complex (2) is obtained. The Pt atom is coordinated in square planar arrangements by two chloride ions in a trans-configuration, the N-formyl-N,N′-bisaryltrimethylenediamine nitrogen atom, and the phosphine P atom. An extensive three-dimensional network of three C-H…O hydrogen bonds, two C-H…π and one π…π interactions are responsible for the crystal stabilization. Intermolecular hydrogen bonds and C-H…π interactions produce R 2 2 (6), R 2 2 (22), R 2 2 (24), R 3 3 (23), R 4 4 (26), and R 4 4 (32) rings.  相似文献   

9.
A mixed complex aqua(2.2.2-cryptand)(perchlorato-O)lead(II) diaqua(2.2.2-cryptand)lead(II) tris(perchlorate), [Pb(2.2.2-Crypt)(CIO4)(H2O)]+ [Pb(2.2.2-Crypt)(H2O)2]2+ (ClO 4 ? )3, is synthesized and studied by X-ray diffraction analysis. The crystals are orthorhombic: space group Pbca, a = 19.118 Å, b = 15.360 Å, c = 39.020 Å, Z = 8. The structure is solved by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.089 for 7712 reflections (CAD-4 automated diffractometer, λMoK α radiation). In each of the two complex cations of the host-guest type in the structure, the Pb2+ cation is coordinated by all the eight heteroatoms (6O + 2N) of the cryptand ligand and by two O atoms of the water molecule and ClO 4 ? anion or by two O atoms of two water molecules. In the crystal, alternating complex cations and ClO 4 ? anions are linked into infinite chains (along the z axis) through interionic hydrogen bonds O-H···O-Cl.  相似文献   

10.
The accuracy for the direct measurement of the dissociation energy of the N 2 + B2Σ u +-state was significantly improved by using frequency doubled laser light, which enables the authors to excite from lowerv″-levels and additionally to calibrate the fundamental laser wavelength with an iodine cell. The obtained value is:D 8(N 2 + )=70248±6 cm?1.  相似文献   

11.
The apparent,φ v, and partial, \(\bar V\) 2, molal volumes of a series of homologousbis-tetraalkylammonium bromides have been determined in H2O and D2O at 25°C from precision density measurements carried out with a buoyancy densimeter and a dilatometer. The Debye-Hückel theoretical limiting slope forφ v and \(\bar V\) 2 as a function of the square root of molar concentration is approached for all of the salts studied. the concentration dependence ofφ v and \(\bar V\) 2 is anomalously large and negative in both solvents, with the deviations being less negative in D2O than in H2O. The bolaform salts have larger \(\bar V\) 2 o values in H2O than in D2O, contrary to the observed behavior of R4NX salts. Possible origins of the solvent isotope effects observed are discussed in terms of structural and cavity contributions to the measured volumes. A comparison of thermodynamic transfer functions (H2O→D2O) for Et4N Br and the corresponding bolaform analog appropriate in the consideration of cation-cation pairing of Et4N+ ions shows inconclusive evidence for the support of the cation pair theory.  相似文献   

12.
The absolute cross section for photodissociation of Ar2N 2 + was measured as a function of wavelength in the 470–550 nm range. A structureless broad band was observed; the cross section has a maximum of ~ 210 × 10?18 cm2 at ~ 500 nm. The measurement of the photofragment time-of-flight spectrum shows that(1) N 2 + , Ar+ and Ar 2 + are produced in the photodissociation of Ar2N 2 + in the wavelength range studied, and that(2) the observed visible absorption band is ascribable to a parallel-type transition of Ar2N 2 + , which possibly retains a linear geometry.  相似文献   

13.
The vibrational structure of the first band of the photoelectron (PE) spectrum of HO 2 ? and DO 2 ? has been calculated on the basis of (slightly modified) ab initio potentials. The best agreement with the experimental spectrum of HO 2 ? is obtained for a vibrational temperature of ca. 600 K. “Peak D”, which has been under debate in earlier work, is composed of two transitions, with the “hot” transition 3 1 1 being more intense than the adiabatic transition. Since thev 2 bending mode of DO2 has significant OO stretching character, the vibrational structure of the PE spectrum of DO 2 ? is more complex than that of HO 2 ? . Large-scale RCCSD(T) calculations of the equilibrium electron affinity of HO2 yield 1.058 eV which agrees with the experimental value of 1.044 ± 0.020 eV.  相似文献   

14.
EXAFS spectroscopy is used to investigate the characteristic features of the spatial and electronic structure of the polynuclear Fe(II) complexes Fe(ATR)3A2 (where A is the NO 3 ? , BF 4 ? , Br?, or ClO 4 ? anion and ATR is 4-amino-1,2,4-triazole) and their magnetically diluted phases FexZn1?x(ATR)3(NO3)2. The absolute distances from Fe and Zn to the surrounding atoms are determined at temperatures higher and lower than the spin transition point. In all complexes, the spin transition is accompanied by significant changes in the local environment of Fe atoms, while in the magnetically diluted phases the surrounding of zinc remains unchanged. It is shown that addition of Zn atoms distorts the triazole rings in the low-spin state of the complexes. No localized anions were revealed within 3.3 Å from the Fe and Zn atoms. It is shown that a decrease in the spin transition temperature correlates with an increase in Fe?N distances in the low-spin complexes due to magnetic dilution and substitution of anions in the series NO 3 ? , BF 4 ? , Br?, ClO 4 ? of ATR-containing complexes.  相似文献   

15.
Cross sections for the production of O 2 ? in charge transfer collisions of fast molecular hydrogen ions (H 2 + , D 2 + , H 3 + , and D 3 + of 10 to 140 keV kinetic energy) with O2 molecules have been determined by means of a time-of-flight mass spectrometer analysing the slow negative product ions from the collisions. Within the measuring accuracy equivelocity H 2 + and D 2 + ions have the same cross sections for the generation of O 2 ? . The projectile velocity dependence curve of the cross section passes through a broad maximum with a peak value of about 6.5×10?18 cm2 around the Bohr velocity (25 keV/u) before showing an asymptotic decrease still within the limited energy range under investigation that is in inverse proportion to the square of velocity. Throughout the examined energy range H 3 + ions yield a cross section which is about 1.4 times larger than that of H 2 + ions of the same velocity. The fragment ion O? has been found to appear with cross sections between 10?19 and 10?18 cm2 upon collisional excitation in the energy range under investigation, with ever decreasing intensity when the energy of the positive hydrogen ions, the proton included, was increased.  相似文献   

16.
The electronic structures of FeO 4 2? , RuO4, RuO 4 ? , RuO 4 2? and OsO4 have been investigated using the Hartree-Fock-Slater Discrete Variational Method. The calculated ordering of the valence orbitals is 2t 2, 1e, 2a 1, 3t 2 andt 1 with thet 1 orbital as the highest occupied. The first five charge transfer bands are assigned as:t 1→2e(v 1), 3t 2→2e(v 2),t 1→4t 2(v 3), 3t 2→4t 2(v 4) and 2a 1→4t 2(v 5). It is suggested that ad-d transition should be observed at 1.5 eV in RuO 4 ? and RuO 4 2? .  相似文献   

17.
Cs3[UO2(CH3COO)3]2[UO2(CH3COO)(NCS)2(H2O)] (I) and Cs5[UO2(CH3COO)3]3[UO2 (NCS)4(H2O)] · 2H2O (II) have been synthesized via the reaction between uranyl acetate and cesium thiocyanate in aqueous solution. According to single-crystal X-ray diffraction data, both compounds crystallize in monoclinic system with the unit cell parameters a = 18.7036(5) Å, b = 16.7787(3) Å, c = 12.9636(3) Å, β = 92.532(1)°, space group C2/c, Z = 4, R = 0.0434 (I); and a = 21.7843(3) Å, b = 24.6436(5) Å, c = 13.1942(2) Å, β = 126.482(1)°, space group Cc, Z = 4, R = 0.0273 (II). Uranium-containing structural units of compound (I) are mononuclear [UO2(CH3COO)3]? and [UO2(CH3COO)(NCS)2(H2O)]? moieties, which correspond to the AB 3 01 and AB01M 3 1 crystallochemical groups (A = UO 2 2+ , B01 = CH3COO?, M1 = NCS? and H2O). The structure of compound II is built of [UO2(CH3COO)3]? and [UO2(NCS)4(H2O)]2? complexes, which belong to the AB 3 01 and AM 5 1 crystallochemical groups, respectively. Uranium-containing complexes in both structures are linked into a framework by hydrogen bonds and electrostatic interactions with cesium cations. The IR spectra of compounds I and II agree well with X-ray diffraction data.  相似文献   

18.
Copper(II) salts were reacted with various quinoline aldehyde chalcogensemicarbazones to yield compounds formulated as Cu(HL)X2 · nH2O (I: HL = quinoline aldehyde thiosemicarbazone (HL1), X = ClO4, n = 2; II: HL = quinoline aldehyde 4-C2H5-thiosemicarbazone (HL1a), X = NO3, n = 0; III: HL = quinoline aldehyde semicarbazone (HL2), X = ClO4, n = 3 and IV: HL = quinoline aldehyde 4-Ph-semicarbazone (HL2a), X = NO3, n = 1). Regardless of the reagent ratio, the products were compounds having the metal: ligand ratio of 1: 1, where the organic ligand was coordinated tridentate in a molecular form. Single-crystal X-ray diffraction showed that, depending on the chalcogen atom in the organic ligand (S or O), the substituent in the 4th position (at the terminal nitrogen atom), and the specifics of the acido ligand, complexes I–IV had appreciably differing molecular structure organizations. The structures of I and III are formed by a 1D charged coordination polymer, ClO 4 ? anions, and water molecules and may be described by the formula [Cu(HL)(H2O)(ClO4)] n (ClO4) n · nH2O. Copper(II) coordination polyhedra in I and II are (4 + 2) and (4 + 1 + 1) tetragonal bipyramids, respectively. In II and IV, the structures are monomeric and can be described as [Cu(HL1a)(NO3)2] with the metal coordination polyhedron shaped as a (4 + 1) tetragonal pyramid in II and as [Cu(HL2a)(H2O)(NO3)](NO3) with the metal coordination polyhedron shaped as a (3 + 2) trigonal bipyramid in IV. The structure of II is built of molecular complexes, each comprising, apart from ligand HL1a, two monodentate coordinated NO 3 ? groups. The oxygen atom of one anion together with the NNS donor atom set of ligand HL1a form the base, and the oxygen atom of the other anion is in the apex of the coordination polyhedron. In IV, the structure is ionic and built of NO 3 ? anions and [Cu(HL2a)(H2O)(NO3)]+ complex cations, where a cationic coordination polyhedron has a trigonal-bipyramidal configuration with organic ligand HL2a positioned along the long edge. The bipyramidal base is made up by the oxygen atoms of the coordinated water molecule and monodentate nitrato group and the nitrogen atom N2 of the azomethyne group.  相似文献   

19.
Guided ion beam mass spectrometry is used to measure the cross sections as a function of kinetic energy for reaction of SiH4 with O+(4S), O 2 + (2Πg,v=0), N+(3P), and N 2 + (2Σ g + ,v=0). All four ions react with silane by dissociative charge-transfer to form SiH m + (m=0?3), and all but N 2 + also form SiXH m + products where (m=0?3) andX=O, O2 or N. The overall reactivity of the O+, O 2 + , and N+ systems show little dependence on kinetic energy, but for the case of N 2 + , the reaction probability and product distribution relies heavily on the kinetic energy of the system. The present results are compared with those previously reported for reactions of the rare gas ions with silane [13] and are discussed in terms of vertical ionization from the 1t 2 and 3a 1 bands of SiH4. Thermal reaction rates are also provided and dicussed.  相似文献   

20.
A complex [Ca(18C6)(H2O)3]2+(ClO 4 ? · 18C6 · H2O is synthesized and studied by X-ray diffraction analysis. The structure (space group P21/n, a = 11.570 Å, b = 16.024 Å, c = 22.225 Å, β = 98.89°, Z = 4) is solved by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.075 for 5305 independent reflections (CAD4 automated diffractometer, λMoK α radiation). In the complex cation of the host-guest type, the Ca2+ cation lies in the cavity of the 18-crown-6 ligand and is coordinated by all the six O atoms and three O atoms of three water molecules. In a crystal, the alternating complex anions, 18C6 molecules, and water molecules are joined by hydrogen bonds into broad infinite chains along the y axis. The disordered ClO 4 ? anions are bonded to these chains on the side through hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号