首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— –Photophysical properties of [26] porphyrin (26 P) were investigated in chloroform. The quantum yields of fluorescence, of S1→ T1 intersystem crossing and singlet oxygen formation were measured. The purity, stability, the strong absorption in the red (δmax= 783 nm; εmax= 28 000 M 1 cm-1) and the ability of singlet oxygen formation recommend 26 P as potential photosensitizer for tumor therapy.  相似文献   

2.
CURCUMIN-DERIVED TRANSIENTS: A PULSED LASER AND PULSE RADIOLYSIS STUDY   总被引:1,自引:0,他引:1  
Abstract In this paper we report a time-resolved investigation of transients derived from curcumin, which may be intimately involved in the processes leading to its biological activity. Fluorescence and triplet quantum yields are respectively 0.06 and 0.11. The high percentage of internal conversion is proposed to proceed via H-transfer within the thermodynamically favored enol structure of what is formally a 1,3-diketone. The triplet energy (191 ± 2 kJ mol−1), natural lifetime (1.5 μs) and self-quenching rate constant (5.0 × 108 L mol−1 s−1) have been determined. Oxygen quenching of the triplet leads to the production of singlet oxygen with unit efficiency. Curcumin quenches the latter species very inefficiently (2.5 × 105 L mob−1 s−1). The curcumin radical has been produced via three mechanistically distinct methods. This species is unreactive toward oxygen but is repaired by vitamins C and E and anthralin.  相似文献   

3.
Abstract— The triplet state of vitamin D3 in benzene has been characterised in terms of its absorption spectrum, Λmax 315 nm, its lifetime, 300 ns, its rate constant for reaction with oxygen, 4.2 times 109mol−1 s−1 and the efficiency with which it sensitizes the formation of singlet oxygen, 25%. There is a large difference in the electronic excitation energies of the spectroscopic and relaxed triplets, ˜ 237 kJ mol−1 and147–168 kJ mol−1, respectively. It has been shown that, in the endothermic situation, the vitamin D3 molecule is a 'nonvertical'acceptor of triplet energy. This is in accord with the non-planar character of its acyclic conjugated Il-system.  相似文献   

4.
Abstract— The UV absorption and the fluorescence emission spectra of both bovine (BSA) and human (HSA) serum albumin underwent noticeable changes upon irradiation of their 1:1 complexes with bilirubin; both these phenomena are suggestive of the photosensitized modification of aromatic amino acid residues. Amino acid analysis showed that after relatively short irradiation times of both albumins, only histidyl and tryptophyl residues appeared to be affected to a significant extent. After 60min of irradiation, some decrease in the tyrosine content was also observed, especially for HSA.
Conformational studies, obtained by exposing unirradiated and irradiated BSA and HSA to denaturing agents, showed that the three-dimensional organization of the 15 min irradiated samples was slightly different from that of the native proteins. On the other hand, after 15 min of irradiation, the association constant of the bilirubin-albumin complexes decreased from 2.07 to 0.54×108 M -1 for HSA and from 2.16 to 0.87×107 M -1 for BSA.
These data indicate that the histidyl residues are relatively unimportant for maintaining the native tertiary structure of BSA and HSA, but they are critical for determining the binding capacity of the albumins. Our data also imply that the tertiary structure of the BSA molecule is more labile than that of HSA.  相似文献   

5.
HEMATOPORPHYRIN PHOTOSENSITIZATION OF SERUM ALBUMIN and SUBTILISIN BPN'   总被引:1,自引:0,他引:1  
—The photosensitized inactivation of subtilisin BPN' by free hematoporphyrin (HP) followed exponential kinetics with positive mechanistic tests for the involvement of singlet oxygen (1O2) as the principal intermediate. The photoinactivation quantum yield was 0.029 at 390 nm in oxygen-saturated, D2O buffer at pH 7.0. The effects of HP binding were investigated for tryptophan oxidation in bovine serum albumin (BSA) and human serum albumin (HSA) at high protein:HP concentration ratios where the HP was > 97% complexed. The reaction kinetics were non-exponential and mimick a second-order process in the initial stages. The rate of HP photobleaching was 30-fold faster for complexed HP compared with free HP, which was shown to account for the observed kinetics. Mechanistic tests showed that 1O2 was the dominant photooxidizing intermediate of tryptophan residues and that it was not involved in the accompanying photobleaching of HP. The quantum yield for tryptophan oxidation in BSA was 0.11 at 390 nm in oxygen-saturated, D2O buffer at pH 8.0. The reactivity of HSA was approximately 2-fold lower than BSA for equivalent conditions. Estimates of the reaction cross sections led to 3 Å2 for the inactivation of subtilisin BPN' by 1O2 and 20 Å2 for the oxidation of tryptophan in BSA.  相似文献   

6.
Abstract— The extinction coefficient εT, of triplet benzophenone in benzene has been directly determined by absolute measurements of absorbed energy and triplet absorbance, Δ D 0T, under demonstrably linear conditions where incident excitation energy, E 0, and ground state absorbance, A 0, are both extrapolated to zero. The result, 7220 ± 320 M -1 cm-1 at 530 nm, validates and slightly corrects many measurements relative to benzophenone of triplet extinction coefficients made by the energy transfer technique, and of triplet yields obtained by the comparative method.
As E 0 and A 0 both decrease, Δ D 0T becomes proportional to their product. In this situation, the ratio R = (1/ A 0)(dΔ D 0T/d E 0) = (εT - εGT. Measurements of R , referred to benzophenone, give (εT - εGT for any substance, without necessity for absolute energy calibration.
Both absolute and relative laser flash measurements on zinc tetraphenyl porphyrin (εT - εG at 470 nm = 7.3 × 104 M -1 cm-1) give φT= 0.83 ± 0.04.  相似文献   

7.
Abstract— The rate constant k5/ > for physical quenching of singlet oxygen O21;) by the sensitizer in dye-sensitized photooxygenations is determined in the case of chlorophylls a and b (7.3 times 108, 4.2 times 108 M-1 s-1 respectively), pheophytins a and b (7.4 times 107, 3.0 times 107 M-1 s_1 respectively), tetraphenylporphyrin (4.4 times 107 M-1 s_1), magnesium tetraphenylporphyrin (5.0 times 108 M-1 s_1), zinc tetraphenylporphyrin (1.5 times 108 M-1 s_l) and protoporphyrin IX-dimethylester (9.1 times 107 M -1 s_1) in benzene. These sensitizers show a linear correlation between log ksO , and their half-wave oxidation potentials and the value of the slope is similar to that observed for various compounds such as phenols. It is concluded that (i) the interaction between chlorophylls and related compounds with singlet oxygen may involve an exciplex as for phenols, and (ii) physical quenching may be envisaged as a spin-orbit-induced intersystem crossing within the exciplex.  相似文献   

8.
Abstract The excited state properties of the chalcone isomers of malvidin 3,5-diglucoside (malvin) in acidic aqueous solution (0 < pH < 4) were investigated using steady-state and time-resolved fluorescence spectroscopy. The two chalcone isomers of malvin were first isolated by high-performance liquid chromatography and then characterized by UV/visible absorption and fluorescence spectroscopy. The results were supported by molecular orbital calculations. The rate constants for photodeprotonation ( k 1= 1 × 109 s−l) and protonation ( k −1= 1.3 × 1010 L mol−1 s−l) were determined, both from the multiexponential fluorescence decays and the fluorescence intensities measured at the emission wavelengths of the neutral and ionized chalcone forms. The results here obtained are relevant for the understanding of the photoreactivity of anthocyanins in acidic medium.  相似文献   

9.
Abstract— The deactivation rate of excited pyrene by indole strongly depends on the polarity of the media. In micellar systems (Triton X-100, cetyltrimcthylammonium chloride (CTAC) and sodium dodecylsulfate (SDS) the deactivation efficiency is enhanced due to the high local concentration of indole in the micellar pseudophase. Quantitative interpretation of the data in CTAC and SDS micelles requires to take into account indole exchange between the micelles and the aqueous phase. In SDS micelles, where due to their smaller size the exchange process is more relevant, the exit and entrance rates are (3.0 ± 0.6) x 106 and (1.2 ± 0.3) x 1010 M −1s−1 respectively. Intramicellar bimolecular quenching constants are (1.1 ± 0.2) x 108 M−1 s−1 (1.4 ± 0.2) x 108 M −1 s−1 and (1.5 ± 0.2) x 108 M −1 s−1 in Triton X-100, SDS and CTAC respectively. These rates are similar to those measured in ethanol rich ethanol-water homogeneous solutions. This is in agreement with the average polarity sensed by both pyrene and indole in the micellar pseudophases.  相似文献   

10.
Abstract— N,N'-bis(2-ethyl-1,3-dioxolane)-kryptocyanine (EDKC), a lipophilic dye with a delocalized positive charge, photosensitizes cells to visible irradiation. In phosphate-buffered saline (PBS), EDKC absorbs maximally at 700 nm (ε= 1.2 × 105 M−1 cm−1) and in methanol, the absorption maximum is at 706 nm (ε= 2.3 × 105 M−1 cm−1). EDKC partitions from PBS into small unilamellar liposomes prepared from saturated phospholipids and into membranes prepared from red blood cells (RBC) and binds to human serum albumin (HSA). The EDKC fluorescence maximum red shifts from 713 nm in PBS to 720–725 nm in liposomes and RBC membranes and the fluorescence intensity is enhanced by factors of 14–35 compared to PBS (φ= 0.0046). EDKC is thermally unstable in PBS (T1/2= 2 h at 1.3 × 10−5 M EDKC), but stable in methanol. In liposomes and RBC membranes, EDKC is 10 times more stable than in PBS, indicating that it is only partially exposed to the aqueous phase. Quenching of EDKC fluorescence in liposomes and RBC membranes by trinitrobenzene sulfonate also indicates that EDKC is not buried within the membranes. Photodecomposition of EDKC was oxygen-dependent and occurred with a low quantum yield (6.4 × 10−4 in PBS). Singlet oxygen was not detected upon irradiation of EDKC in membranes or with HSA since the self-sensitized oxidation of EDKC occurred at the same rate in D2O as in H2O and was not quenched by sodium azide or histidine.  相似文献   

11.
Abstract— The chemical reaction rate constant of bilirubin with singlet oxygen in basic aqueous solution has been redetermined to be 3.5 × 108 M-1 s-1 by a competitive technique using a 1,3-diphenylisobenzofuran in sodium dodecyl sulfate micelles. Bilirubin also physically quenches a singlet oxygen with a rate constant of 9 × 108 M -1 s-1. The lifetime of singlet oxygen in D2O solution has been determined to be 35 μ s . The absorption cross-section for the molecular oxygen 3g-→1δ g + 1 v electronic transition at 1.06μn in aqueous solution is unexpectedly larger than the gas paase cross-section.  相似文献   

12.
When the cations bound to purple membrane are removed it turns blue, and when this blue membrane is irradiated its color changes to pink. Irradiation of pink membrane leads to the reformation of blue membrane. We have determined that the quantum efficiency for the formation of pink membrane from deionized blue membrane is 1.6 ± 0.6 ± 10 4 at 0oC, pH 5.0. We also found that the quantum efficiency for the back photoconversion, i.e. the formation of blue membrane from pink membrane, is 8.8 ± 1.6 ± 10-3 at 0oC, 55 times greater than that of the forward photoconversion reaction. The extinction coefficients of the pink membrane and blue membrane were determined to be 44 500 ± 670 cm-1 M-1 at 491 nm and 54 760 ± 830 cm-1 M -1 at 603 nm, respectively, assuming light-adapted purple membrane is 63 000 cm-1 M -1 at 568 nm. The quantum efficiency for forming pink membrane from blue membrane is much lower than that for forming the photointermediate of the blue membrane's photocycle. Their relationship is similar to that of light-adaptation and photocycle of the dark-adapted purple membrane.  相似文献   

13.
Abstract— A novel method for the determination of singlet oxygen reaction rate constants is described and applied to studies of cyclohexadiene in methanol and gelatins in H2O and D2O. The technique uses tris (2,2'-bipyridine) ruthenium(II) dication (Ru(bipy)32+) as both singlet oxygen sensitizer and in situ oxygen concentration monitor during irradiation of sealed samples. Because of the high efficiency with which the luminescence of Ru(bipy)32+* can be detected, and the fact that emission lifetimes are used, the method offers some advantages over those previously described. The advantages and disadvantages of the method are discussed. A rate constant of 2.1 (±0.3) x 106 mol-1 dm3 s-1 has been determined for the reaction of 1O2 with cyclohexadiene in methanol. For two different photographic gelatins the sums of reaction and quenching rate constants are 2.0 (±0.4) x 106 and 3.1 (±2.0) x 105 mol-1 dm3 s-1; for swine skin gelatin this value is 3.9 (±2.4) × 105 mol-1 dm3 s-1. Chemical reaction, rather than physical quenching, is the dominant reaction route for gelatins and 1O2.  相似文献   

14.
Abstract— Singlet oxygen has been generated directly in 1,1,2-trichloro, 1,2,2-trifluoroethane solution by irradiation of the oxygen dimol 23∑-g→21δg transition with a pulsed dye laser and the 3g-1δg+ lv transition with a continuous Nd-YAG laser. The rates of chemical reaction and physical quenching of singlet oxygen so generated has been measured for a series of substituted oxodipyrro-methenes. The results show that the oxodipyrromethenes react with singlet oxygen at rates comparable to that for 1,3-diphenylisobenzofuran. The rate of quenching of singlet oxygen by ground state oxygen has been measured to be 2.5±0.3 × 103 M-l s-1.  相似文献   

15.
Abstract— Four strains carrying all four possible combinations of the alleles nur, nur+, uvr A6 and uvr A + were transduced to hemA8 . The hemA8 mutation blocks the synthesis of δ-aminolevulinic acid (δ-ALA), one of the first steps in the synthesis of porphyrin and, ultimately, cytochromes essential for aerobic respiration. The cells were grown either with or without δ-ALA and treated with broad-spectrum near-ultraviolet light (NUV; 300–400 nm). hemA8 defective cells grown without δ-ALA were resistant to inactivation by NUV while hemA8 cells were sensitive to such inactivation when supplemented with δ-ALA. The sensitivity to NUV inactivation conferred by the nur gene was retained in the hemA8 derivatives. The sensitivity of such cells to NUV inactivation can be controlled by varying the level of δ-ALA supplementation. The level of δ-ALA supplementation did not influence the sensitivity of the cells to inactivation by far-UV light (FUV; 200–300 nm). The near-UV sensitivity of hemA+ cells was not significantly altered when grown with δ-ALA suppiementation suggesting that endogenously formed δ-ALA supports the normal, regulated level of porphyrin synthesis. These results can be interpreted to mean that porphyrin components of the respiratory chain in E. coli represent chromophores involved specifically in broad-spectrum NUV inactivating events.  相似文献   

16.
Abstract— Electrophilic compounds metronidazole (METRO) and misonidazole (MISO), considerably enhance the photooxidation quantum yield of Type I photodynamic substrates such as Trp, Tyr and Cys. For the latter, the quantum yield of photooxidation which can be much greater than one, suggests radical chain reactions. On the other hand, METRO and MISO inhibit 1O2 formation because they react at diffusion controlled rate (∼109 M−1 S−1) with porphyrin triplets forming, porphyrin radical cations. As a result, the porphyrins are still able to photosensitize the destruction of Type I substrates even in the absence of O2. These results are discussed with respect to the possibility of increasing the sensitivity of hypoxic cells to porphyrin photosensitization.  相似文献   

17.
Abstract— The kinetics of photooxidation of triplets of metalloporphyrin compounds to their corresponding radical cations was investigated. Zn-tetraphenyl porphyrin (ZnTPP) and Mg-tetraphenylpor-phyrin (MgTPP) triplets were oxidized by europium salt with rate constants of 4.8 × 105M-1s-1 and 2.1 × 106M-1s-1, respectively. The high rate constant of oxidation of MgTPP triplet might be related to the ground state oxidation potential, being 0.54 V (SCE) for the Mg complex and 0.71 (SCE) for the Zn complex.
The rate constant of oxidation of ZnTPP excited singlet is in the order of diffusion control, i.e. ˜ 1010M -1 s-1. Excitation of ferric, cupric, cobaltic, and vanadyl tetraphenylporphyrin did not result in a long-lived triplet state that would allow oxidation studies using flash photolysis.  相似文献   

18.
Abstract— Continuous blue light irradiation of resealed erythrocyte ghosts at 37°C in the presence of uroporphyrin or protoporphyrin results in 1O2-mediated (azide inhibitable) lipid peroxidation and membrane lysis. Lipid peroxidation was assessed by thiobarbituric acid reactivity and by quantitation of total hydroperoxides, while lysis was measured in terms of trappedglucose–6-P release. Low concentrations of ascorbate, AH- (e.g. 0.5 m M ). present at the start of irradiation, significantly enhanced the rates of lysis and peroxidation, whereas relatively high concentrations of AH- (e.g. 15 m M ) inhibited both processes. By way of contrast. AH- produced only a dose-dependent inhibition of the photoinactivation of lysozyme, added as an extramembranous target. No significant AH-induced lipid peroxidation was observed in dark or light controls, plus porphyrin or minus porphyrin, respectively. Stimulation of peroxidation and lysis by low levels of AH- was enhanced by added Fe(III), abolished by EDTA. but unaffected by catalase or superoxide dismutase. A plausible explanation for these results is as follows. At low concentrations of AH- prooxidant activity is favored. Redox metal-mediated breakdown of photoperoxides occurs, which tends to amplify lipid peroxidation. Neither O2- nor H2O2 appears to be involved. At significantly high concentrations, AH- acts predominantly as an antioxidant by intercepting 1O2 and/or sensitizer triplet, or by scavenging free radical intermediates of lipid peroxidation.  相似文献   

19.
Abstract— The photosensitized oxidation of 10–100 μ M N -acetyl-L-tryptophanamide (NATA) in neutral aqueous solution and in the presence of various dyes proceeds by a pure O2(1Δg)-involving mechanism. Incorporation of the tryptophyl (Trp) residue into the polypeptide chain of human serum albumin (HSA) has no influence on the mechanism and efficiency of Trp photooxidation when sensitized either by methylene blue, a non-binding dye, or by rose bengal, a dye that gives non-covalent 1: 1 complexes with HSA. This is due to the location of the Trp residue in close proximity of the protein surface and, in the case of rose bengal, to the coincidence of the photophysical properties (including the quantum yield of O2(1Δg) generation) for the free and HSA-bound dye. Hematoporphyrin also binds to HSA with 1: 1 stoichiometry, although at a different site from rose bengal. Bound Hp again displays photophysical properties very similar with those of free Hp; however, the efficiency of Trp photo-oxidation in HSA is about 5-fold higher than in NATA owing to a limited rearrangement of the protein structure, induced by Hp binding, which enhances the probability of chemical quenching of O2(1Δg) by the indole ring.  相似文献   

20.
Abstract— The excited states of bilirubin (BR) in a variety of environments have been studied by 347 nm laser flash photolysis. Quantum yields of formation of triplet BR have been shown to be less than 0.005 in solution in water ( p H 9–11), methanolic ammonia, 10% aqueous mulgofen and in cetyl trimethyl-ammonium bromide. In benzene the quantum yield was 0.01 although this diminished to less than 0.005 on addition of triethylamine. Permanent products are formed with benzene and with 1% methanolic ammonia. With BR in HSA a transient decaying with k = 3.5 × 105 s-1 is formed by a monophotonic process together with a permanent product. Neither species is affected by oxygen or by iodide ion. Both originate from BR molecules in the strongest binding site in the HSA. The yields of both species are unaffected by salt but are temperature dependent. The decay of the transient is strongly temperature dependent corresponding to an activation energy of about 50–60 kj mol-1. If this transient is a triplet it is formed with a quantum yield of 0.13 ± 0.01. The relevance of these results to an understanding of the photo therapeutic process is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号