首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
刘成周  邓岳君  骆叶成 《物理学报》2018,67(6):60401-060401
利用黑洞的绝热不变性,研究了引力彩虹时空中Kerr黑洞的熵谱和面积谱.首先,在引力彩虹时空背景下,计算了Kerr黑洞的绝热不变作用量,并将其与玻尔-索末菲量子化条件相结合,给出了黑洞的熵谱.得到的熵谱没有引力彩虹时空本身具有的粒子能量依赖性,且是与经典Kerr黑洞中原始贝肯斯坦熵谱相同的等间距熵谱.然后,根据黑洞热力学第一定律和黑洞熵谱,给出了与原始贝肯斯坦谱不同的面积谱.该面积谱是非等间距的,而且有对黑洞面积的依赖性,但不依赖于探测粒子的能量.面积谱表明,随着黑洞面积的减少,面积间隔逐步变小;当黑洞达到普朗克尺度时,面积量子可降为零.这表示黑洞面积不再减少,黑洞出现辐射剩余.而在忽略色散关系的修正效应或在大黑洞极限下,面积谱的修正项可以忽略,引力彩虹Kerr黑洞面积谱可以回归到原始贝肯斯坦谱.此外,对引力彩虹时空Kerr黑洞的熵进行了讨论,得到了带有面积倒数修正项的黑洞熵,分析了黑洞熵的量子修正与面积谱量子修正的一致性.  相似文献   

2.
B R Iyer  Arvind Kumar 《Pramana》1978,11(2):171-185
The techniques of second quantization in Kerr metric for the scalar and neutrino (massless) fields are extended to the massive spin half case. The normal modes of Dirac field in Kerr metric are obtained in Chandrasekhar’s representation and the field is quantized as usual by imposing equal-time anti-commutation relations. The vacuum expectation value of energy-momentum tensor is evaluated asymptotically, leading to the result that a Kerr black hole spontaneously creates, in addition to scalar and neutrino quanta, massive Dirac particles in the classical superradiant modes.  相似文献   

3.
Kerr黑洞的量子面积谱及微黑洞的最小质量   总被引:6,自引:0,他引:6       下载免费PDF全文
蒋继建  李传安 《物理学报》2005,54(8):3958-3961
Kerr黑洞仅含有两个参量M和J.把M和J视为广义坐标,并将M,J和它们的共轭量构成四维相空 间,通过规范变换得到了Kerr黑洞的量子面积谱.由此给出了Schwarzschild黑洞的 最小质量. 关键词: 黑洞 量子面积谱 共轭 规范变换  相似文献   

4.
Based on the ideas of adiabatic invariant quantity, we attempt to quantize the entropy of a charged black hole in de Sitter spacetime in two different coordinates. The entropy spectrum is obtained by imposing Bohr-Sommerfeld quantization rule and the laws of black hole thermodynamics to the modified adiabatic covariant action of the charged black hole. The result shows that the spacing of entropy spectrum is equidistant, and the corresponding horizon area quantum is identical to Bekenstein’s result. Interestingly, in contrast to the quasinormal mode analysis, we note that there is no need to impose the small charge limit for the obtained entropy spectrum of the charged black hole. We also note that the modified adiabatic covariant action gives the same value for the black hole entropy spectrum in different coordinate frames. This is a physically desired result since the entropy spectrum should be invariant under the coordinate transformations.  相似文献   

5.
6.
7.
Based on spherically symmetric reduction of loop quantum gravity, quantization of the portion interior to the horizon of a Reissner-Nordström black hole is studied. Classical phase space variables of all regions of such a black hole are calculated for the physical case M 2>Q 2. This calculation suggests a candidate for a classically unbounded function of which all divergent components of the curvature scalar are composed. The corresponding quantum operator is constructed and is shown explicitly to possess a bounded operator. Comparison of the obtained result with the one for the Schwarzschild case shows that the upper bound of the curvature operator of a charged black hole reduces to that of Schwarzschild at the limit Q→0. This local avoidance of singularity together with non-singular evolution equation indicates the role quantum geometry can play in treating classical singularity of such black holes.  相似文献   

8.
We studied the correction of the quantum tunneling radiation of fermions with spin 1/2 in Kerr anti-de-Sitter black hole. First, the dynamic equation of spin 1/2 fermions was corrected using Lorentz’s violation theory. Second, the new expressions of the fermions quantum tunneling rate,the Hawking temperature of the black hole and the entropy of the black hole were obtained according to the corrected fermions dynamic equation. Our results show that Hawking temperature increases with the enhancement of both the coupling strength and the radial component of ether-like field, but is independent of non-radial components of ether-like field.At last, some comments are made on the results of our work.  相似文献   

9.
Limits to the Acceleration of Black Holes   总被引:1,自引:0,他引:1  
Using the Dirac equation but with a null surfacecondition, we obtain the event horizon equation, and thetemperature function of a rectilinearly acceleratingblack hole with electric-magnetic charge. The cosmic censorship hypothesis implies that theacceleration of a black hole has a limit, which isM/rH 2 for the rectilinearlyaccelerating black hole. The limit values ofacceleration for other black holes, including the rectilinearly accelerating blackhole with electricmagnetic charge the Kerr–Newmanblack hole, and the Kerr black hole are given.  相似文献   

10.
The area spectra of extreme Kerr and nearly extreme Kerr–Newmann black holes are investigated from quasinormal modes via Maggiore’s physical interpretation of quasinormal modes. Using the first law of black hole thermodynamics and the action variable quantization, we arrive at consistent equally spaced area and entropy spectra. Results show that the spectra are irrelevant to the parameters of the black holes and the perturbation fields, which fully agree with Bekensteins original conjecture. In the calculations, we have defined the corresponding Hawking temperatures of the black holes following the suggestion of Mäkelä et al. to avoid the zero temperature and to guarantee the (nearly-) extreme black holes quantizable.  相似文献   

11.
Shortly after the discovery of the Kerr metric in 1963, it was realized that a region existed outside of the black hole’s event horizon where no time-like observer could remain stationary. In 1969, Roger Penrose showed that particles within this ergosphere region could possess negative energy, as measured by an observer at infinity. When captured by the horizon, these negative energy particles essentially extract mass and angular momentum from the black hole. While the decay of a single particle within the ergosphere is not a particularly efficient means of energy extraction, the collision of multiple particles can reach arbitrarily high center-of-mass energy in the limit of extremal black hole spin. The resulting particles can escape with high efficiency, potentially serving as a probe of high-energy particle physics as well as general relativity. In this paper, we briefly review the history of the field and highlight a specific astrophysical application of the collisional Penrose process: the potential to enhance annihilation of dark matter particles in the vicinity of a supermassive black hole.  相似文献   

12.
The aim of this paper is to enlighten the emerging relevance of Quantum Information Theory in the field of Quantum Gravity. As it was suggested by J. A. Wheeler, information theory must play a relevant role in understanding the foundations of Quantum Mechanics (the "It from bit" proposal). Here we suggest that quantum information must play a relevant role in Quantum Gravity (the "It from qubit" proposal). The conjecture is that Quantum Gravity, the theory which will reconcile Quantum Mechanics with General Relativity, can be formulated in terms of quantum bits of information (qubits) stored in space at the Planck scale. This conjecture is based on the following arguments: a) The holographic principle, b) The loop quantum gravity approach and spin networks, c) Quantum geometry and black hole entropy. From the above arguments, as they stand in the literature, it follows that the edges of spin networks pierce the black hole horizon and excite curvature degrees of freedom on the surface. These excitations are micro-states of Chern-Simons theory and account of the black hole entropy which turns out to be a quarter of the area of the horizon, (in units of Planck area), in accordance with the holographic principle. Moreover, the states which dominate the counting correspond to punctures of spin j = 1/2 and one can in fact visualize each micro-state as a bit of information. The obvious generalization of this result is to consider open spin networks with edges labeled by the spin –1/ 2 representation of SU(2) in a superposed state of spin "on" and spin "down." The micro-state corresponding to such a puncture will be a pixel of area which is "on" and "off" at the same time, and it will encode a qubit of information. This picture, when applied to quantum cosmology, describes an early inflationary universe which is a discrete version of the de Sitter universe.  相似文献   

13.
A black hole is interpreted as an open system in the Prigogine sense. From the point of view of spin transformations, the existence of a phase transition corresponding to an extreme Kerr hole is recognized. The role played by the spin entropy into superradiance of a rotating black hole is investigated.  相似文献   

14.
By constructing the four-dimensional phase space based on the observable physical quantity of Kerr black hole and gauge transformation, the Kerr black hole entropy in the phase space was obtained. Then considering the corresponding mechanical quantities as operators and making the operators quantized, entropy spectrum of Kerr black hole was obtained. Our results show that the Kerr black hole has the entropy spectrum with equal intervals, which is in agreement with the idea of Bekenstein. In the limit of large event horizon, the area of the adjacent event horizon of the black hole have equal intervals. The results are in consistent with the results based on the loop quantum gravity theory by Dreyer et al.  相似文献   

15.
B R Iyer  Arvind Kumar 《Pramana》1979,12(2):103-120
Unruh’s technique of replacing collapse by boundary conditions on the past horizon (theξ-quantisation scheme) for the derivation of the well-known Hawking radiation is extended to the Kerr black hole for the scalar and especially for the spin half field. The expectation value of the energy momentum tensor is evaluated asymptotically in theξ-vacuum state yielding explicitly the net Hawking flux of scalar and spin half quanta. The appropriate statistical distribution that emerges naturally for Dirac quanta validates the ξ-scheme for fermions and confirms the association of temperature with a Kerr black hole.  相似文献   

16.
The thermodynamics of black holes is reformulated within the context of the recently developed formalism of geometrothermodynamics. This reformulation is shown to be invariant with respect to Legendre transformations, and to allow several equivalent representations. Legendre invariance allows us to explain a series of contradictory results known in the literature from the use of Weinhold’s and Ruppeiner’s thermodynamic metrics for black holes. For the Reissner–Nordström black hole the geometry of the space of equilibrium states is curved, showing a non trivial thermodynamic interaction, and the curvature contains information about critical points and phase transitions. On the contrary, for the Kerr black hole the geometry is flat and does not explain its phase transition structure.  相似文献   

17.
By inspecting some known solutions to Einstein's equations, we present the metric of higher dimensional Reissner-Nordström black hole in the background of a Friedman-Robertson-Walker universe. Then we verify the solution with a perfect fluid. The discussion of the event horizon of the black hole reveals that the scale of the black hole would increase with the expansion of the universe and decrease with the contraction of the universe.  相似文献   

18.
刘辽  裴寿镛 《物理学报》2006,55(9):4980-4982
引入Sommerfeld作用量量子化条件来处理Schwarzschild黑洞的量子化问题. 发现此类量子化黑洞存在一个质量为mG=123mp的基态,处于基态的量子Schwarzschild黑洞不再存在Hawking蒸发和任何其他辐射,可名之曰暗星. 它的存在不仅可以解决信息丢失的疑难,而且极可能是构成暗物质的主要候选者. 关键词: 量子史瓦茨黑洞 暗物质  相似文献   

19.
A new method for exact determination of the masses and spins of black holes from the observations of quasi-periodic oscillations is discussed. The detected signal from the hot clumps in the accretion plasma must contain modulations with two characteristic frequencies: the frequency of rotation of the black hole event horizon and the frequency of the latitudinal precession of the clump’s orbit. Application of the method of two characteristic frequencies for interpretation of the observed quasi-periodic oscillations from the supermassive black hole in the Galactic center in the X-rays and in the near IR region yields the most exact, for the present, values of the mass and the spin (Kerr parameter) of the Sgr A* black hole: M = (4.2 ± 0.2) × 106 M and a = 0.65 ± 0.05. The observed quasi-periodic oscillations with a period of about 11.5 min are identified as the black hole event horizon rotation period and those with a period of about 19 min are identified as the latitudinal oscillation period of the hot spot orbits in the accretion disk.  相似文献   

20.
Using the spin networks and the asymptotic quasinormal mode frequencies of black holes given by loop quantum gravity, the minimum horizon area gap is obtained. Then the quantum area spectrum of black holes is derived and the black hole entropy is a realized quantization. The results show that the black hole entropy given by loop quantum gravity is in full accord with the Bekenstein-Hawking entropy with a suitable Immirzi. Supported by the National Natural Science Foundation of China (Grant No. 10773002)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号