首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A random synthetic jet array driven turbulence tank   总被引:1,自引:0,他引:1  
We measure the flow above an array of randomly driven, upward-facing synthetic jets used to generate turbulence beneath a free surface. Compared to grid stirred tanks (GSTs), this system offers smaller mean flows at equivalent turbulent Reynolds numbers with fewer moving parts.
Evan A. VarianoEmail:
  相似文献   

2.
We develop the axisymmetric Synthetic Schlieren technique to study the wake of a microscale sphere settling through a density stratification. A video-microscope was used to magnify and image apparent displacements of a micron-sized random-dot pattern. Due to the nature of the wake, density gradient perturbations in the horizontal greatly exceed those in the vertical, requiring modification of previously developed axisymmetric techniques. We present results for 780 and 383 μm spheres, and describe the limiting role of noise in the system for a 157 μm sphere. This technique can be instrumental in understanding a range of ecological and environmental oceanic processes on the microscale.
King-Yeung Yick (Corresponding author)Email:
Roman StockerEmail:
Thomas PeacockEmail:
  相似文献   

3.
Assessment of camera models for use in planar velocimetry calibration   总被引:5,自引:2,他引:3  
The performance of three implementations of pinhole-based camera models for use in common light-sheet imaging arrangements is investigated on the background of application to particle image velocimetry (PIV) and Doppler global velocimetry (DGV). Calibration data obtained from translated planar calibration targets was found to yield camera attitude within 0.1° on four different test cases with object distance varying as little as 2% depending on the choice of camera model. Camera calibration using data from a single image of coplanar points is considered a viable alternative to manual triangulation of camera positions but is restricted to off-normal viewing directions.
Christian E. WillertEmail:
  相似文献   

4.
A series of baseline displacement measurements have been obtained using 2D Digital Image Correlation (2D-DIC) and images from Scanning Electron Microscopes (SEM). Direct correlation of subsets from a reference image to subsets in a series of uncorrected images is used to identify the presence of non-stationary step-changes in the measured displacements. Using image time integration and recently developed approaches to correct residual drift and spatial distortions in recorded images, results clearly indicate that the corrected SEM images can be used to extract deformations with displacement accuracy of ±0.02 pixels (1 nm at magnification of 10,000) and mean value strain measurements that are consistent with independent estimates and have point-to-point strain variability of ±1.5 × 10−4.
M. A. Sutton (SEM member)Email:
  相似文献   

5.
Two- and three-dimensional flows in nearly cuboidal cavities are investigated experimentally. A tight cavity is formed in the gap between two long and parallel cylinders of large radii by adding rigid top, bottom, and end walls. The cross-section perpendicular to the axes of the cylinders is nearly rectangular with aspect ratio Γ. The axial aspect ratio Λ > 10 is large to suppress end-wall effects. The fluid motion is driven by independent and steady rotation of the cylinders about their axes which defines two Reynolds numbers Re 1,2. Stability boundaries of the nearly two-dimensional steady flow have been determined as functions of Re 1,2 for Γ = 0.76 and Γ = 1. Up to six different three-dimensional supercritical modes have been identified. The critical thresholds for the onset of most of the three-dimensional modes, three of which have been observed for the first time, agree well with corresponding linear-stability calculations. Particular attention is paid to the flow for Γ = 1 under symmetric and parallel wall motion. In that case the basic flow consists of two mirror symmetric counter-rotating parallel vortices. They become modulated in span-wise direction as the driving increases. Detailed LDV measurements of the supercritical three-dimensional velocity field and the bifurcation show an excellent agreement with numerical simulations.
Tanja Siegmann-Hegerfeld (Corresponding author)Email:
Stefan AlbensoederEmail:
Hendrik C. KuhlmannEmail:
  相似文献   

6.
The National Institute of Standards and Technology (NIST) has developed an electrical pulse-heated Kolsky Bar technique for measuring the constitutive response of metals at heating rates of up to 6,000 K/s and strain rates up to 104 s−1. Under these conditions, which are approaching those found in high speed machining, thermally activated microstructural processes such as grain growth, solid state phase transformation and dislocation annealing can be bypassed, leading to unique non-equilibrium superheated microstructural states. Flow stresses can thus differ significantly from equilibrium high temperature conditions. This paper describes the NIST pulse-heated Kolsky bar technique in detail, including a thorough assessment of uncertainties in temperature and flow stress measurement.
S. P. MatesEmail:
  相似文献   

7.
This paper presents a theoretical model and corresponding experimental results of the oblique-incidence response of a luminescent photoelastic coating (LPC). LPCs use a luminescent dye that both partially preserves the stress-modified polarization state and provides high emission signal strength at oblique surface orientations. These characteristics enable the technique to acquire full-field strain separated measurements and principal strain directions, potentially on complex three-dimensional geometries, without the use of supplemental experimental or analytical techniques. Results of a single-layer LPC on a disk in diametral compression are presented to assess a theoretical model and evaluate the measurement sensitivity.
J. P. HubnerEmail:
  相似文献   

8.
An iterative procedure, based on the proper orthogonal decomposition (POD), first proposed by Everson and Sirovich (J Opt Soc Am A 12(8):1657–1664, 1995) is applied to marred particle image velocimetry (PIV) data of shallow rectangular cavity flow at Mach 0.19, 0.28, 0.38, and 0.55. The procedure estimates the POD modes while simultaneously estimating the missing vectors in the PIV data. The results demonstrate that the absolute difference between the repaired vectors and the original PIV data approaches the experimental uncertainty as the number of included POD modes is increased. The estimation of the dominant POD modes is also shown to converge by examining the subspace spanned by the POD eigenfunctions.
Nathan E. Murray (Corresponding author)Email:
Lawrence S. UkeileyEmail:
  相似文献   

9.
This paper reports laser-Doppler measurements of the mean flow and turbulence stresses in a swirling pipe flow. Experiments were carried out under well-controlled laboratory conditions in a refractive index-matched pipe flow facility. The results show pronounced asymmetry in mean and fluctuating quantities during the downstream decay of the swirl. Experimental data reveal that the swirl significantly modifies the anisotropy of turbulence and that it can induce explosive growth of the turbulent kinetic energy during its decay. Anisotropy invariant mapping of the turbulent stresses shows that the additional flow deformation imposed by initially strong swirling motion forces turbulence in the core region to tend towards the isotropic two-component state. When turbulence reaches this limiting state it induces rapid production of turbulent kinetic energy during the swirl decay.
J. Jovanović (Corresponding author)Email:
F. DurstEmail:
  相似文献   

10.
Failure behavior of composite materials in general and particulate composites in particular is intimately linked to interactions between a matrix crack and a second phase inclusion. In this work, surface deformations are optically mapped in the vicinity of a crack–inclusion pair using moiré interferometry. Edge cracked epoxy beams, each with a symmetrically positioned cylindrical glass inclusion ahead of the tip, are used to simulate a compliant matrix crack interacting with a stiff inclusion. Processes involving microelectronic fabrication techniques are developed for creating linear gratings in the crack–inclusion vicinity. The debond evolution between the inclusion–matrix pair is successfully mapped by recording crack opening displacements under quasi-static loading conditions. The surface deformations are analyzed to study evolution of strain fields due to crack–inclusion interactions. A numerical model based on experimental observations is also developed to simulate debonding of the inclusion from the matrix. An element stiffness deactivation method in conjunction with critical radial stress criterion is successfully demonstrated using finite element method. The proposed methodology is shown to capture the experimentally observed debonding process well.
H. V. TippurEmail:
  相似文献   

11.
Planar Raman imaging through a spectrograph is demonstrated as a diagnostic tool for quantitative flow visualisation of internal supersonic wedge flow. A dedicated Bayesian deconvolution filter is used to remove the spectral structure that is introduced by the spectrograph. The 2D density field is determined with ca. 10% precision using average images over 6,000 laser pulses, down to 0.5 mm from the surface of the wedge. Direct interpretations of Raman intensities provide more precise density data than indirect interpretations based on shock geometry in 2D inviscid flow.
N. J. DamEmail:
  相似文献   

12.
Variational optical flow estimation for particle image velocimetry   总被引:1,自引:1,他引:1  
We introduce a novel class of algorithms for evaluating PIV image pairs. The mathematical basis is a continuous variational formulation for globally estimating the optical flow vector fields over the whole image. This class of approaches has been known in the field of image processing and computer vision for more than two decades but apparently has not been applied to PIV image pairs so far. We pay particular attention to a multi-scale representation of the image data so as to cope with the quite specific signal structure of particle image pairs. The experimental evaluation shows that a prototypical variational approach competes in noisy real-world scenarios with three alternative approaches especially designed for PIV-sequence evaluation. We outline the potential of the variational method for further developments.The publications of the CVGPR Group are listed under .
P. RuhnauEmail:
H. NobachEmail:
  相似文献   

13.
Measurement of the gradient field of a turbulent free surface   总被引:1,自引:1,他引:0  
We study the free surface above a turbulent channel flow. We describe a laser scanning technique that can be used to measure the space–time turbulent surface gradient field along a line. A harmonically swiveling laser beam is focused on the surface and its angle of refraction is measured using a position sensing device. The registered signals can be converted easily to the desired gradient field, and spectra and correlations can be measured. Examples of measured spectra and correlation functions of the surface above a turbulent channel flow (Reynolds number R λ ≈ 250) demonstrate the viability of the technique. We further assess the validity of Taylor’s frozen turbulence hypothesis that implies that time-dependent signals measured along a line that is oriented perpendicularly to the mean channel velocity can be interpreted as 2D measurements of the surface slope. While Taylor’s hypothesis works for a turbulent velocity field, it does not work for its free surface.
Willem van de WaterEmail:
  相似文献   

14.
A novel seeding method for microscale particle image velocimetry (micro-PIV) is presented. The method relies on selective seeding of a thin fluid layer within an otherwise particle-free flow. In analogy to the laser sheet in macroscale PIV, the generated particle sheet defines both the depth and the position of the measurement plane, independent of the details of the optical setup. Selectively seeded micro-PIV is applied to measure the instantaneous velocity field in a microchannel with a depth-wise resolution 20% below the estimated optical measurement depth of the micro-PIV system. In principle, a measurement depth corresponding to the diameter of the tracer particles may be achieved.
Michal M. MielnikEmail: Phone: +47-22067792
  相似文献   

15.
An apparatus is described for the measurement of unsteady thrust and propulsive efficiency produced by biologically inspired oscillating hydrodynamic propulsors. Force measurement is achieved using a strain-gauge-based force transducer, augmented with a lever to amplify or attenuate the applied force and control the measurement sensitivity and natural frequency of vibration. The lever can be used to tune the system to a specific application and it is shown that, using the lever, the stiffness can be made to increase more rapidly than the measurement sensitivity decreases. Efficiency is computed from measurements of the time-averaged power imparted to the fluid. The apparatus is applied to two different propulsors, demonstrating the versatility of the system; wake visualizations are examined, which provide insight into the physical mechanisms of efficient propulsion.
James H. J. BuchholzEmail: Email:
  相似文献   

16.
Three-dimensional micro-PTV using deconvolution microscopy   总被引:1,自引:0,他引:1  
A three-dimensional micro-particle tracking velocimetry (micro-PTV) scheme is presented using a single camera with deconvolution microscopy. This method devises tracking of the line-of-sight (z) flow vectors by correlating the diffraction pattern ring size variations with the defocusing distances of small particle locations. The working principle is based on optical serial sectioning microscopy, or equivalently deconvolution microscopy, that records images of an infinitesimally small particle, and generates a point-spread function of the three-dimensional diffraction patterns. A new image-processing algorithm has also been developed to digitally identify the center locations and measure the radii of the diffraction rings, which allows simultaneous tracking of all three-vector components. The developed PTV technique uses a 40×, 0.75 NA dry objective lens with 500-nm fluorescent seeding particles of SG=1.05, and successfully measures the fully three-dimensional fields flowing over a spherical obstacle snuggly fitted inside a 100 μm × 100 μm micro-channel. The volumetric measurement resolution of the present system is equivalent to a 5.16 μm × 5.16 μm × 5.16 μm cube, and the overall measurement uncertainty for single-point velocity vector detection is estimated to ±7.58%.
K. D. KihmEmail: Phone: +1-865-9745292
  相似文献   

17.
An investigation of the flow over a three-dimensional (3-D) double backward-facing step is presented using a combination of both quantitative measurements from a particle image velocimetry (PIV) system and qualitative oil-flow visualizations. The arrangement of the PIV instrument allows for snap-shots of the (x, y) and (y, z) planes at various axial and spanwise positions. The measurements illustrate characteristics that are found in both two-dimensional (2-D) backward-facing steps and 3-D flows around wall mounted cubes. In particular, the development of a horseshoe vortex is found after each step alongside other vortical motions introduced by the geometry of the model. Large turbulence levels are found to be confined to a region in the center of the backstep; their mean square levels being much larger than what has been observed in 2-D backward-facing steps. The large turbulent fluctuations are attributed to a quasi-periodic shedding of the horseshoe vortex as it continuously draws energy from the spiral nodes of separation, which form to create the base of the horseshoe vortex. A combination of effects including the shedding of the first horseshoe vortex, the horizontal entrainment of air and the presence of two counter rotating vortices initiated at reattachment, are shown to cause the steering vector of the flow to jettison away from the surface in the first redeveloping region and along the center at z/h = 0. Oil-flow visualizations confirm these observations.
C. E. Tinney (Corresponding author)Email:
L. S. UkeileyEmail:
  相似文献   

18.
We introduce the three-dimensional measurement technique (XPIV) based on a Particle Image Velocimetry (PIV) system. The technique provides three-dimensional and statistically significant velocity data. The main principle of the technique lies in the combination of defocus, stereoscopic and multi-plane illumination concepts. Preliminary results of the turbulent boundary layer in a flume are presented. The quality of the velocity data is evaluated by using the velocity profiles and relative turbulent intensity of the boundary layer. The analysis indicates that the XPIV is a reliable experimental tool for three-dimensional fluid velocity measurements.More information at:
G. HetsroniEmail:
  相似文献   

19.
20.
A technique for obtaining accurate, high (spatial) resolution measurements of sediment redeposition levels is described. In certain regimes, the method may also be employed to provide measurements of sediment layer thickness as a function of time. The method uses a uniform light source placed beneath the layer, consisting of transparent particles, so that the intensity of light at a point on the surface of the layer can be related to the depth of particles at that point. A set of experiments, using the impact of a vortex ring with a glass ballotini particle layer as the resuspension mechanism, are described to test and illustrate the technique.
R. J. MunroEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号