首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work we prepared the hybrid material (SG) by the sol–gel method through the reaction between tetraethylortosilicate (TEOS) and acetylacetonatepropyltrimethoxysilane (ACACSIL). We also immobilized the acetylacetonate on silica surface (GR) by the grafting method through the reaction between a commercial silica and ACACSIL. Infrared thermal analysis showed that these materials were thermally stable until 200 °C. SG is a microporous material and has surface area of 500 m2 g−1, average porous volume of 0.09 cm3 g−1 and organic content of 1 mmol g−1. GR is a mesoporous material and has surface area of 300 m2 g−1, average porous volume of 0.7 cm3 g−1 and organic content of 0.4 mmol g−1. Iron(III) was coordinated to SG and GR resulting in the SG–Fe and GR–Fe silicas which were tested as catalysts on the aerobic epoxidation of cis-cyclooctene. SG–Fe yielded 100% of conversion and 94% of selectivity in epoxide whereas GR–Fe silica led to a maximum conversion of 50% and 100% of selectivity.  相似文献   

2.
Thin films of the perovskite and garnet structured gadolinium ferrites GdFeO3 and Gd3Fe5O12 have been synthesized by a sol–gel method, based on stoichiometric mixtures of acetyl acetone chelated Gd3+ and Fe3+ dissolved in 2-methoxy ethanol. After spin coating onto Si wafers, and heating in air at 700 °C for 20 h, neatly grown essentially single phase films were obtained. From X-ray photoelectron spectroscopy an iron deficiency is observed in the uppermost layer of both films, implying that the crystallites preferably end in planes rich in Gd and O but not in Fe. The films were also characterized by X-ray powder diffraction, scanning electron microscopy, infrared spectroscopy, and magnetic measurements.  相似文献   

3.
Al2O3–TiO2 nanocrystalline powders were synthesized by sol–gel process. Aluminum sec-butoxide and titanium isopropoxide chemicals were used as precursors and ethyl acetoacetate was used as chelating agent. Thermal and crystallization behaviors of the precursor powders were investigated by thermal gravimetric-differential thermal analysis, Fourier-transform infrared spectrum and X-ray diffraction. The average crystalline size of heat treated Al2O3–TiO2 powders at 1,100 °C is ~100 nm.  相似文献   

4.
The synthesis of hydrolytically active heteroligand complexes of the composition [M(O2C5H7)x(iOC5H11)y] (M = Fe3+ and Y3+) using iron and yttrium acetylacetonates was studied. Their reactivity was shown to be dependent on the degree of shielding of iron and yttrium cations in hydrolysis and polycondensation during the formation of a connected dispersion system. The crystallization temperature of iron yttrium garnet Y3Fe5O12 upon heating xerogel was determined. It was found that the dispersity, microstructure, and magnetic characteristics of the products depend on the synthesis conditions.  相似文献   

5.
La2Mo2O9 films were successfully synthesized on silicon (100) and poly-alumina substrates via modified sol–gel method with inorganic salts of La(NO3)3 and (NH4)6Mo7O24 as precursors. Pure La2Mo2O9 phase was confirmed by XRD if the annealing temperature was higher than 500 °C. Energy dispersive spectrometry (EDS) of TEM revealed that the molar ratio of La to Mo was nearly 1:1. Field-emission SEM characterization showed that the films were dense, crack-free and uniform. The grain size of the films ranged from 30 to 400 nm depending upon the calcination temperature and duration time. The roughness calculated from AFM topography varied in the range between 10 and 35 nm. The thickness of the films was more than 200 nm for single-layered films. The electrical conductivity of the films reaches 0.06 S/cm at 600 °C that was almost more than one order of magnitude higher than that of the corresponding bulk material.  相似文献   

6.
α-Fe2O3 films as inorganic red color filter were synthesized through a simple procedure, epoxide assisted sol–gel route. The sol was prepared through reaction of FeCl2 in boiling ethanol solution with propylene oxide. The films were formed by the dip-coating of sol on substrate, drying and the following annealing steps. The obtained α-Fe2O3 films were composed of homogeneous distributed α-Fe2O3 nanoparticles with size of 30–50 nm. The film shows strong absorption to the light below 600 nm and high transparency to the red light (87% at 630 nm). As inorganic red color filter, the optic behavior of this film is nearly as same as the organic color filter made of dye.  相似文献   

7.
Eu (0.1, 0.5 and 1.0 mol%) doped Tb3Al5O12 (TAG) was prepared by sol–gel technique through nitrate-citrate route followed by sintering in air (1,100 °C maximum temperature). XRD analysis showed that Eu3+ enters the TAG lattice substitutionally replacing the Tb3+ ion. Both XRD as well as FTIR investigation showed improvement in crystalline phase with the increase in the sintering temperature. SEM and TEM analysis showed that the powder contains the particles in 5–20 nm size with almost spherical morphology. The excitation spectrum recorded in 300–500 nm showed dominant absorption due to Tb3+ while the emission spectra recorded with 380 nm excitation had strong red emission characteristic of Eu3+. The intensity of this emission increases with the increase of the Eu concentration from 0.1 to 0.5 mol%. However, the emission intensity decreased on further increase in Eu concentration to 1.0 mol%. This intensity variation with dopant concentration is attributed to well-known “concentration quenching” observed in rare-earth doped materials. Reasonably strong red emission due to Eu was observed when excited with the blue (480 nm) radiation of a Xe lamp indicating the usefulness of the material for the realization of white light LED.  相似文献   

8.
Magnetic bioglasses in the system CaO–SiO2–P2O5 were prepared by interaction of acetic acid vapors with iron nitrate dispersed on the surface of sol–gel derived porous silicate network. Upon pyrolysis, the created iron acetate species transform into magnetic iron oxide nanoparticles. X-ray diffraction (XRD), FT-infrared (FT-IR) spectroscopy and surface area measurements (BET) were employed to monitor the evolution of glass structural features during the synthetic pathway as well as the structure and the texture of the resultant glasses. XRD, Raman spectroscopy and vibration magnetic measurements (VSM) revealed the features of magnetic phases, developed in the form of γ-Fe2O3 and magnetite. The obtained glasses exhibit in vitro bioactivity, expressed by spontaneous formation of hydroxyapatite on their surface after immersion in SBF at 37 °C, confirmed with μ-Raman and FT-IR spectroscopies.  相似文献   

9.
Undoped x · α-Fe2O3 y · CeO2 and doped with praseodymium ceramic pigments were obtained by the sol–gel method after heat treatment at 800 °C for 2 h. These pigments were characterized by XRD, nitrogen adsorption, scanning electron microscopy, ultraviolet-visible absorption spectroscopy and colorimetrical measurements. Red and brown colors with several tonalities were observed after changes with Ce and Pr concentration.  相似文献   

10.
11.
12.
Magnetic chitosan microspheres were prepared by the emulsification cross-linking technique in the presence of glutaraldehyde as cross-linking agent, liquid paraffin as dispersant, and Span-80 as emulsifier. The optimal cross-linking time and Co0.5Ni0.5Fe2O4: chitosan ratio were determined. The morphology of particles was studied by different techniques. The adsorption characteristics were studied and the effect exerted by the initial concentration of methyl orange, the time of cross-linking, and the amount of the adsorbent was determined. It is found that the product obtained at the Co0.5Ni0.5Fe2O4: chitosan ratio 1: 4 and the crosslinking time 5 h has the uniform morphology. At room temperature, the Co0.5Ni0.5Fe2O4–chitosan magnetic composite has maximal adsorption for methyl orange at the dosage 20 mg.  相似文献   

13.
We report the independent invention of perovskite ferroelectric nanowires strontium bismuth tantalate (SrBi2Ta2O9, SBT). Electrophoretic sol–gel techniques have been used successfully. The morphology and structures are analyzed via SEM, TEM and XRD. SBT nanowires and nanoparticles filled template revealed 30 and 40 μm long, respectively. SBT are proved to be a single phase of orthorhombic perovskite structure. As it indicated, SBT nanowires has been crystallized at 700 °C. To minimize surface polarity, SBT nanowires oriented preferentially along the growing axis (c axis) by translation and rotation of atomic clusters of SBT.  相似文献   

14.
CoFe2O4 ferrites were synthesized sol–gel with cobalt chloride, ferric chloride and citric acid as the main raw material. X-ray diffraction, vibrating sample magnetometer and simultaneous thermal analysis were applied to character the structure and magnetic properties of traditional and microwave calcined samples. The samples with pH 5 and molar ratio of citric acid to metal nitrate 1–1.2 showed the optimal structure and magnetic properties. Microwave calcination reduces the synthesis time from 2 h for conventional calcination to 15–30 min. The saturation magnetization (σ s ) for sample microwave-calcined at 550 °C for 30 min reaches to 75.89 emu/g, much higher than that of conventional-calcined samples.  相似文献   

15.
16.
We have refined single crystals of Na2Ti6O13 through the X-ray Rietveld method. The synthesis of the Na2Ti6O13 was carried out by sol–gel method at 70 °C, and the obtained gel was heat treated at different temperatures. Through different analytical techniques such as X-ray Diffraction (XRD), Scanning Electronic Microscopy (SEM), Infrared Spectroscopy (FTIR), and Thermal Analysis (DTA/TGA), it was determined that Na2Ti6O13 can be prepared at low temperature (750 °C) by sol–gel method. The product crystallizes in rectangular shape micro-fibers, free of impurities. Rietveld refinement was performed using X-ray diffraction technique taking as basis a monoclinic cell with space group C2/m. The following refined parameters were obtained: a = 15.095(7) Å, b = 3.745(3) Å, c = 9.174(1) Å, β = 99.01. Additionally, Na2Ti6O13 was tested as photocatalysts on the degradation of methylene blue (MB) under UV light. The degradation reaction follows a first order reaction model with kinetic parameters k = 0.0089 min?1, and t 1/2 = 78 min.  相似文献   

17.
18.
Monodispersed γ-Fe2O3 nanoparticles were prepared by a procedure-simple and precursor-cheap route, epoxide assisted sol–gel method. The γ-Fe2O3 nanoparticles were obtained by the reaction of FeCl2 in ethanol solution with propylene oxide to form the sol, following by the boiling of the solution. As compared with other metal ions of +2 formal charge, the unexpected acidity of FeCl2 in ethanol solution assure the formation of sol. As an advantage, the unique chemistry of this route results in the low temperature of synthesis, leading to the extremely small particle size of 2.3 nm and non-aggregation state of the particles.  相似文献   

19.
Aluminum molybdate was successfully synthesized using a simplified PVA assisted sol–gel method resulting in highly crystalline, monophasic (monoclinic P21/a) samples. These materials could readily be obtained at temperatures of 600 and 700 °C after calcining for as little as 15–20 min. Scanning electron microscopy and X-ray powder diffraction indicated that even the sample calcined at 600 °C for 20 min was free of impurities and composed of submicron sized particles (~300 nm). Transmission electron microscopy was used to confirm the monophasic character and submicron dimensions of the as-prepared powders. In addition to producing high quality samples, it was also observed that the metal to PVA ratio used during this simplified synthesis, could be used as a control parameter for tailoring the particle sizes of the final product.  相似文献   

20.
In this study, SiO2/TiO2–organoclay hybrids with high adsorption capability and high photocatalytic activity were synthesized by immobilizing mixed silica and titanium dioxide nanoparticles on organically modified clay via a hydrothermal sol–gel method. Addition of negatively charged silica particles enhanced the uniform dispersion of titanium dioxide nanoparticles on organoclay layers by decreasing the system tension, which resulted in high photocatalytic activity of SiO2/TiO2–organoclay hybrids. The high adsorption capability endowed by organically modified clay enriched the organic compounds around the photoactive sites, and thus greatly improved the photodegradation efficiency. Combining the high adsorption capability of organoclay with the high photocatalytic activity of TiO2 nanoparticles, SiO2/TiO2–organoclay hybrids were promising and cost-effective photocatalysts in removal of pollutants from wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号