首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Two series of TiO2 thin films were prepared based on soluble precursor powders: The first run originated directly from an alcohol-based coating solution whereas for the second batch the aqueous precursor powder sol had previously undergone a hydrothermal treatment. The respective microstructures were characterized by electron microscopy, the phase evolution was monitored by X-ray diffraction. Ellipsometric porosimetry (EP) was employed to reveal changes of porosity and pore size induced by thermal treatment of the films.
Soluble TiO2 precursor powders were hydrothermally treated to yield coating solutions. Films from these sols were compared with those directly obtained by dissolving the precursor powders. Results indicate that crystallization to anatase is induced under hydrothermal conditions and the resulting films mostly maintain their porosity throughout thermal treatment. In contrast to that coatings processed from as-dissolved precursor powders undergo more extensive densification
  相似文献   

2.
Phase pure, mesoporous, and crystalline V2O5 is synthesized by acid hydrolysis technique and subsequently heat treatment is carried out at 450, 500, 550, and 600?°C in air. The as-synthesized and heat-treated powders are thoroughly studied by X-ray diffraction, electron microscopy, dynamic light scattering, and spectroscopic techniques. A unique morphological tuning of V2O5 powders from as small as ~80?nm tiny nanorod to as large as a ~2.5?μm hexagonal grain as microstructural unit blocks is observed. A qualitative mechanism is suggested for particle growth. Further, the powders are pelletized and subsequently sintered in air at the same temperatures of 450, 500, 550, and 600?°C at which the powders were heat treated. Finally, nanomechanical properties of bulk pelletized V2O5 such as nanohardness and Young’s modulus are also evaluated by nanoindentation technique at nine different loads e.g., 10, 30, 50, 70, 100, 300, 500, 700, and 1000?mN.  相似文献   

3.
The aim of this work was an investigation of structural and electrical properties of ZnO/Zn2-xFexTiO4 (x?=?0.7, 1, 1.4) powders. The compounds obtained by sol-gel method are characterized by several techniques: X-ray diffraction (XRD), N2 adsorption–desorption isotherms, scanning and transmission electron microscopy (SEM and TEM), X-ray photoelectron spectroscopy (XPS), electrical and dielectrical measurements. The XRD, SEM and XPS analysis confirmed the formation of ZnFeTiO4 inverse spinel structure. The electrical and dielectrical properties of ZnO/Zn2-xFexTiO4 (x?=?0.7, 1, 1.4) were measured by impedance spectroscopy, revealing a decrease in the electrical conductivity and the dielectric constant with Fe content.  相似文献   

4.
MgF2 coating solutions were solvothermally treated at 160?°C for different time periods, this procedure induced crystallization and particle growth. Antireflection coatings prepared on glass from these solutions were compared to films derived from untreated precursor material. Ellipsometric porosimetry (EP) was employed to characterize structural features of coatings on glass as function of annealing temperature. Based on precursor solutions that had undergone solvothermal treatment antireflective coatings with a peak transparency exceeding 99% were prepared on PMMA substrates.
Solvothermal treatment of MgF2 precursor solutions results in crystallization of particles that can directly be applied to PMMA substrates for λ/4 antireflective films.
  相似文献   

5.
Dual-network aerogels (HPSA) with improved mechanical property and thermal insulation were prepared by vacuum impregnation of HNTs/PVA aerogels (the first network aerogel, HPA) in tetraethoxysilane (TEOS). Scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, and N2 adsorption–desorption analysis were used to study micromorphology and microstructure of HPSA, while compression tests and thermal conductivity tests were used to investigate related properties. The results showed that the dual-network frame was successfully constructed, this enabled HPSA to display enhanced compressive properties with increased HNTs content. The addition of silica sol improved the mesoporous characteristics including specific surface area and pore volume and also reduced the thermal conductivities. The first network made it possible for HPSA to possess good mechanical property, while SiO2 aerogel allowed HPSA greater thermal insulation. The obtained aerogel samples exhibited a high compressive strength (i.e., 1.36?MPa) and a low thermal conductivity (i.e., 0.022?W/(m?K)). HNTs/SiO2 dual-network aerogels with improved strength and thermal insulation could show great potential in a wide variety of applications.  相似文献   

6.
Novel La-doped Bi2WO6 composites were successfully prepared via a facile solvothermal method and well characterized by X-ray diffraction, Brunner?Emmet?Teller measurements, scanning electron microscopy, transmission electron microscopy/high-resolution, energy dispersive spectrometry, X-ray photoelectron spectroscopy, ultraviolet–visible spectroscopy, and Fourier transform infrared spectroscopy. The photocatalytic activity of modified catalysts was evaluated by degrading tetracycline hydrochloride under visible light (450?W Xe lamp irradiation). It was found 5%La-Bi2WO6 had the highest light-absorption ability, great morphology, and microstructures. The La dopant enlarged surface area and increased crystal defects, which may enhance the optical absorption activity and inhibit the recombination of the photo-generated charge carrier, respectively. After 150?min illumination, the photocatalysts that 5%La-Bi2WO6 and pure Bi2WO6 exhibited the best and worst photocatalytic performance, respectively (96.25% vs. 88.92%).  相似文献   

7.
Flower-like ceria (CeO2) architectures consisting of well aligned nanosheets were first synthesized by a glycol solvothermal method. The size of CeO2 architectures is about 5?μm in width and 10?μm in length, with the nanosheets thickness below 100?nm. Subsequently, the adsorbed Ag ions on the surface of CeO2 were in situ reduced to form Ag nanoparticles (NPs), leading to the fabrication of Ag/CeO2 hybrid architectures (HAs). The formed Ag NPs with sizes of 20–40?nm were uniformly loaded on the surface of the CeO2 sheets. The antibacterial properties of Ag/CeO2 HAs against Gram-negative E. coli and Gram-positive S. aureus were evaluated by minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and a filter paper inhibition zone method. The results demonstrated that Ag/CeO2 HAs displayed excellent antibacterial activity toward S. aureus and E. coli, which were attributed to the synergistic antibacterial effect between Ag NPs and CeO2 in HAs. Here, CeO2 nanoflowers as a new substrate could restrict Ag NPs aggregations and improve their antibacterial activities. Therefore, the resulted Ag/CeO2 HAs would be considered as a promising antibacterial agent.  相似文献   

8.
The behaviour of alginate gel film in response to the tensile load is analysed in this paper. The bubbles of 0.5?mm diameter were embedded in the film by the fluidic method prior to gelation, thus providing uniform voidage over the entire film. Further, the intrinsic porosity of the gel matrix around the voids was varied by removing water through either evaporation under vacuum, or employing lyophilisation. The Poisson’s ratio and the modulus of elasticity were estimated from direct measurements. The viscoelasticity of the gel matrix was characterized from stress-relaxation measurement. The transient response to tensile loading and the evolution of stress contours were studied through numerical simulation in ANSYS. The ultimate strength was studied for the gel films with embedded voids of different sizes. The numerical simulations were validated by experimental measurements.  相似文献   

9.
This paper reports a successful preparation of a pure forsterite Mg2SiO4 using the sol–gel approach and its application for the removal of impurities from a Tunisian frying oil. Magnesium nitrate hexahydrate and tetraethylortho-silicate were used as magnesium and silicon precursors, respectively. The synthesis was held at different calcination temperatures for 30?min. The annealed samples were characterized by X-ray diffraction, Fourier transform infrared, scanning electron microscopy, and laser diffraction. The results revealed that the sample calcined at 500?°C was forsterite with unimodal particle size distribution (PSD) centered at 122.8?±?0.3?μm. The dispersion index I (indicator of particle size uniformity) was 1.84. With the temperature increase, well crystallized compounds were obtained. Their PSDs remain unimodal and shift towards smaller particles. A decrease of the dispersion index was also noted, indicating the formation of Mg2SiO4 with more uniform particle size. This study showed that 900?°C could be selected as energy saving temperature suitable for the preparation of a pure and well crystallized Mg2SiO4 within just 30?min of annealing time. The obtained silicate exhibited promoting results for the purification of waste frying oils.
Pure and fine Mg2SiO4 powder with unimodal particle size distribution was prepared by sol gel route under energy saving conditions. The obtained magnesium orthosilicate showed excellent results for waste frying oil purification
  相似文献   

10.
CaMn7O12 precursor sol was prepared by using Ca(NO3)2·4H2O and Mn(CH3COO)4·4H2O as the raw materials, acetylacetone (AcAcH) as the chelating agent, and methyl alcohol (MeOH) as the solvent. The CaMn7O12 crystalline film was obtained via dip-coating and annealing treatment on the LaAlO3 (001) single-crystal substrate. XRD θ-2θ scan indicated that the as-prepared CaMn7O12 film had strong preferred orientation along the c-axis. In addition, the results of the ω and ? scans demonstrated that the film exhibited outstanding out-of-plane and in-plane texture characteristics. The SEM characterization showed that the CaMn7O12 film was dense and free of cracks. The grain size was uniform with an average size of ~180?nm. Vibrating sample magnetometer (VSM) test results indicated the CaMn7O12 film was antiferromagnetic and had a saturation magnetization of 114.2?emu/cm3 at 50?K.  相似文献   

11.
TiO2/WO3 nanocomposite with nanodisk morphology was prepared and successfully used as a photocatalyst. The nanocomposite was obtained via sonochemical and hydrothermal methods, using pomegranate juice as a capping agent. The products were characterized by FE-SEM imaging, BET, EDAX spectroscopy, X-ray diffraction, DRS, and FT-IR spectroscopy. TiO2/WO3 nanocomposite showed high sensitivity to absorb visible light in compared to TiO2. In an optimized condition, the yield of the aerobic photocatalytic oxidation of benzyl alcohol derivatives reached to 65% for the TiO2/WO3 nanocomposite, while the conversion percent of the derivatives was less than 8% and 50% on the TiO2 and WO3 nanoparticles, respectively. Experimental results were supported by density functional theory (DFT) calculations. The DFT results in several solvents of different dielectric constants, confirmed the strong dependence of light absorption and photocatalytic activity to adsorption energy of the substrates on the surface of the nanoparticles (Ead). In addition, the theoretical results showed an inverse correlation between the adsorption energy of benzyl alcohol and its conversion percent, accordance to the experimental trend.  相似文献   

12.
As p–n heterojunction photocatalysts usually possess dramatically improved photocatalytic activity than single photocatalysts, a novel ZnO/Cu2O heterojunction was designed by a facile self-templating method in this study. The crystal structure, chemical composition, surface morphology, and optical property of ZnO/Cu2O heterojunction were investigated to clarify the structure-property correlation. Scanning electron microscope and transmission electron microscope images proved the uniform core-shell submicrospheres of ZnO/Cu2O, in which a three-dimensional flower-like ZnO core was coated by a shell comprised of Cu2O nanoparticles. The photoresponse result showed that the band gap of the ZnO/Cu2O core-shell submicrospheres became narrow, and the absorption edge shifted from the ultraviolet region (380?nm) to the visible region (500?nm) compared with the pure ZnO microflowers. For the degradation of Rhodamine B under visible light, the photocatalytic efficiency of ZnO/Cu2O submicrospheres reached 96% within 40?min of reaction time, which was 3.8 times higher than that of pure ZnO microflowers and up to 4.5 times than that for pure Cu2O nanoparticles. The remarkable visible light-driven photocatalytic performance is mainly attributed to the extended photoresponse range and effective separation of the photo-generated electron-hole pairs in the unique heterojunction.
ZnO/Cu2O core-shell microspheres for the degradation of RhB under visible light
  相似文献   

13.
Zinc gallate (ZnGa2O4) nanopowders doped with Cr3+ (1?mo%) were synthesized by the citric acid assisted sol–gel method. The influence of annealing temperature, structural, morphological, and optical properties of ZnGa2O4: Cr3+ (1?mol%) nanosized particles were investigated. The X-ray diffraction (XRD) spectra indicated that the nanoparticles are cubic in structure and the annealing temperature did not influence any c in structure. The average crystallite size of ZnGa2O4: Cr3+ nanoparticles were observed to increase from 11.85 to 30.88?nm as the annealing temperature increased from 600 to 1000?°C. The scanning electron microscopy (SEM) showed nearly spherical nanostructures that change in size with annealing temperature. The high resolution transmission electron microscope (HR-TEM) images show well resolved lattice fringes which is an indications of highly crystalline samples. Ultraviolet–visible (UV–Vis) measurement show decrease in reflectance in visible region and energy band gap was found to decrease with annealing temperature. The photoluminescence (PL) intensity was found to be maximum for sample annealed at high temperature (1000?°C) and least with sample annealed at low temperature (600?°C). An increase in annealing temperature leads significantly increment in PL intensity. The degree of crystallinity also increased with annealing temperature from XRD, SEM, and HR-TEM analysis. The photoluminescence lifetimes, particle size, and emission spectra are comparable with reports on bioimaging applications.  相似文献   

14.
Superhydrophilic surfaces without the need of other stimuli are usually realized by constructing a rough morphology. However, constructing rough surfaces usually require specialized equipment or complicated processing. Besides, rough surfaces can cause undesirable scattering, which strongly limits the use in optical devices. In this article, we prepared superhydrophilic TiO2 films with ultra-smooth surfaces using simple sol-gel dip-coating method. The hydrophilicity of the TiO2 films varied with different post-heat treatments. The films heat-treated at 400?°C exhibited a durable superhydrophilicity and anti-fogging property. This superhydrophilicity was attributed to the decrease of surface hydrophobic alkoxy groups and the formation of point defects, i.e., Ti3+ and oxygen vacancies, which are favourable for dissociative water adsorption. The amount of surface organic groups was influenced by autophobicity effects, further hydrolysis and decomposition of residual alkoxy groups. Additionally, the wettability behaviours of the films were also explained from the perspective of the surface energy. These results can benefit the design and manufacture of anti-fogging and self-cleaning superhydrophilic TiO2 films.
The TiO2 films exhibited intrinsic superhydrophilicity and anti-fogging property; the superhydrophilicity can maintain 30 days.
  相似文献   

15.
Herein, the catalytic properties of the cerium (IV) salt, cerium (IV)-sandwiched polyoxometalate (POM) and cerium (IV)-sandwiched polyoxometalate intercalated in layered double hydroxides (LDHs) in the H2O2-based green oxidation reactions have been evaluated. These cerium (IV)-based systems were applied as homogeneous and heterogeneous catalysts for the oxidation of pyridines. Despite the fact that the cerium (IV)-sandwiched polyoxometalate as a homogeneous reaction system gives good results, there are some disadvantages in recovery and reusability process. To overcome these problems, new nano catalyst was synthesized by intercalation of the Cerium (IV)-sandwiched polyoxometalate into tris(hydroxymethyl) aminomethane-modified layered double hydroxides (Tris-LDH-CO3). The as-prepared nanocomposite was characterized and used as an effective heterogeneous catalyst for the oxidation of pyridines under mild conditions in the presence of H2O2 as an oxidant. The new heterogeneous nanocomposite can be recovered and reused easily from the reaction media at least ten times without significant decrease in catalytic activity.  相似文献   

16.
In this research, LiMn2O4 nanopowders were synthesized by the sol–gel method using gelatin as a chelating agent. Three categories of samples with various weight ratios of gelatin to the final product, 1:1, 2:1, and 3:1, have been synthesized. The produced gel was dried in a controllable oven with a slow slope up to 250??C and calcined at different temperatures. The results show that the amount of gelatin affects the structural properties such as the formation temperature of the spinel structure, the homogeneity of the size distribution and size of the particles. The sample with the weight ratio of 3:1 of gelatin to the final product has a lower temperature for the formation of LiMn2O4 with more homogeneity, and smaller particles with the average size of 70?nm, which is calcined at 750??C, while the samples with the weight ratios 2:1 and 1:1 have the average particle sizes of 75 and 89?nm, respectively.  相似文献   

17.
Herein, porous Li3V2(PO4)3/C microspheres made of nanoparticles are obtained by a combination of sol spray-drying and subsequent-sintering process. Beta-cyclodextrin serves as a special chelating agent and carbon source to obtain carbon-coated Li3V2(PO4)3 grains with the size of ca. 30–50?nm. The unique porous structure and continuous carbon skeleton facilitate the fast transport of lithium ion and electron. The Li3V2(PO4)3/C microspheres offer an outstanding electrochemical performance, which present a discharge capacity of 122?mAh?g?1 at 2?C with capacity retention of 96% at the end of 1000 cycles and a high-rate capacity of 113?mAh?g?1 at 20?C in the voltage window of 3.0–4.3?V. Moreover, the Li3V2(PO4)3/C microspheres also give considerable cycling stability and high-rate reversible capacity at a higher end-of-charge voltage of 4.8?V.  相似文献   

18.
Nanocomposites of reduced graphene oxide (rGO) coupled gadolinium doped ZnFe2O4 (GZFG) have been successfully one pot in-situ synthesized adopting low temperature solution process from zinc nitrate, iron nitrate, gadolinium acetate and graphene oxide with varying concentrations of gadolinium (upto 10% Gd with respect to Zn) in the precursor medium. X-ray diffraction and transmission electron microscopy studies confirm the presence of single phase cubic spinel structure of ZnFe2O4 that uniformly distributed over the rGO layers. With increasing Gd doping concentration in precursor medium, the average crystallite size of ZnFe2O4 diminishes gradually from ~11 to ~5.5?nm. Raman and X-ray photoelectron spectral analyses confirm an existence of interaction between rGO and ZnFe2O4 in GZFG samples. Using antibiotic levofloxacin in water, the drug removal capacity (DRC) of GZFG has been performed by optimization of parameters such as gadolinium doping concentration in precursor medium, solution pH, etc. However, the gadolinium doping leads to an improvement in DRC of the nanocomposite and the 5% Gd doped sample shows about 86% DRC at the optimized condition. This simple strategy can be utilized in the synthesis of rGO coupled Gd doped other metal oxide nanocomposites for DRC application.  相似文献   

19.
In this study, stearic acid/silica phase change composites were prepared by the sol-gel method using stearic acid as phase change materials (PCMs). The effects of mass fraction of stearic acid were comprehensively investigated. The structures and thermal properties of the obtained composites were characterized by various methods, including scanning electron microscopy (SEM), differential scanning calorimetry (DSC), leakage tests, and thermogravimetry analysis (TG). The results indicated that composite containing 76% stearic acid had the best thermal properties and low mass leakage, making 76% stearic acid as the maximum content that silica matrix could protect in the composites. The latter was further confirmed by morphological analyses of the silica matrix. Silica matrix exhibited spherical particle clusters, following big–small–big–small size pattern as stearic acid rose. The composite with 76% stearic acid was at the key point of change in particle size. These findings look promising for future to prepare silica-based phase change composites with good thermal properties easily.  相似文献   

20.
The influence of the water content in the initial composition on the size of silica particles produced using the Stöber process is well known. We have shown that there are three morphological regimes defined by compositional boundaries. At low water levels (below stoichiometric ratio of water:tetraethoxysilane), very high surface area and aggregated structures are formed; at high water content (>40?wt%) similar structures are also seen. Between these two boundary conditions, discrete particles are formed whose size are dictated by the water content. Within the compositional regime that enables the classical Stöber silica, the structural evolution shows a more rapid attainment of final particle size than the rate of formation of silica supporting the monomer addition hypothesis. The clearer understanding of the role of the initial composition on the output of this synthesis method will be of considerable use for the establishment of reliable reproducible silica production for future industrial adoption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号