首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocomposite cellulose films with obvious magnetic anisotropy have been prepared by in situ synthesis of plate-like Fe2O3 nanoparticles in the cellulose matrix. The influence of the concentrations of FeCl2 and FeCl3 solutions on the morphology and particle size of the synthesized Fe2O3 nanoparticles as well as on the properties of the composite films has been investigated. The Fe2O3 nanoparticles synthesized in the cellulose matrix was γ-Fe2O3, and its morphology was plate-like with size about 48 nm and thickness about 9 nm, which was totally different from those reported works. The concentration of FeCl2 and FeCl3 solution has little influence on the particle size and morphology of the Fe2O3 nanoparticles, while the content of Fe2O3 nanoparticles increased with the increase of the concentration of the precursor solution, indicating that porous structured cellulose matrix could modulate the growth of inorganic nanoparticles. The unique morphology of the Fe2O3 nanoparticles endowed the composite films with obvious magnetic anisotropy, which would expand the applications of the cellulose based nanomaterials.  相似文献   

2.
Fe3O4 nanorods and Fe2O3 nanowires have been synthesized through a simple thermal oxide reaction of Fe with C2H2O4 solution at 200–600°C for 1 h in the air. The morphology and structure of Fe3O4 nanorods and Fe2O3 nanowires were detected with powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The influence of temperature on the morphology development was experimentally investigated. The results show that the polycrystals Fe3O4 nanorods with cubic structure and the average diameter of 0.5–0.8 μm grow after reaction at 200–500°C for 1 h in the air. When the temperature was 600°C, the samples completely became Fe2O3 nanowires with hexagonal structure. It was found that C2H2O4 molecules had a significant effect on the formation of Fe3O4 nanorods. A possible mechanism was also proposed to account for the growth of these Fe3O4 nanorods. Supported by the Fund of Weinan Teacher’s University (Grant No. 08YKZ008), the National Natural Science Foundation of China (Grant No. 20573072) and the Doctoral Fund of Ministry of Education of China (Grant No. 20060718010)  相似文献   

3.
As the solubility is a direct measure of stability, this study compares the solubilities of ZnFe2O4, Fe3O4 and Fe2O3 in high temperature water. Through literature analysis and formula derivation, it is shown that it is reasonable to assume ZnFe2O4 and Fe(OH)3 coexist when ZnFe2O4 is dissolved in water. Results indicated that the solubility of ZnFe2O4 is much lower than that of Fe2O3 or Fe3O4. The low solubility of ZnFe2O4 indicates that it is more protectively stable as an anticorrosion phase. Moreover, the gap between the solubility of ZnFe2O4 and that of Fe3O4 or Fe2O3 was enlarged with an increase of temperature. This means that ZnFe2O4 is more protective at higher temperatures. Further analysis indicated that with the increase of temperature, the solubility of ZnFe2O4 changed little while those of Fe2O3 or Fe3O4 changed a lot. Little change of the solubility of ZnFe2O4 with increase of temperature showed that ZnFe2O4 is stable. The very low and constant solubility of ZnFe2O4 suggests that it is more protective than Fe2O3 and Fe3O4, especially in water at higher temperature.  相似文献   

4.
A new approach to the synthesis of hybrid nanoparticles based on magnetic Fe3O4 nanoparticles and CdS quantum dots, combining magnetic and luminescence properties, has been suggested. Conditions for preparation of their stable aqueous suspensions have been found, and their optical properties have been studied. Nanocomposites produced at the molar ratio Fe3O4: CdS = 5: 1, which exhibited the luminescence properties) and gave stable aqueous suspensions, have turned out to be most promising. The results are evidence that the synthesized nanoparticles can be used for the development of visualizing agents for in vitro biomedical research.  相似文献   

5.
Summary The adsorption of 99Tc on the adsorbers Fe, Fe2O3 and Fe3O4 was studied by batch experiments under aerobic and anoxic conditions. The effects of pH and CO32- concentration of the simulated ground water on the adsorption ratios were also investigated, and the valences of Tc in solution after the adsorption equilibrium were studied by solvent extraction. The adsorption isotherms of TcO4- on the adsorbers Fe, Fe2O3 and Fe3O4 were determined. Experimental results have shown that the adsorption ratio of Tc on Fe decreases with the increase of pH in the range of 5-12 and increases with the decrease of the CO32- concentration in the range of 10-8M-10-2M. Under aerobic conditions, the adsorption ratios of 99Tc on Fe2O3 and Fe3O4 were not influenced by pH and CO32-concentration. When Fe was used as adsorbent, Tc existed mainly in the form of Tc(IV) after equilibrium and in the form of Tc(VII) when the adsorbent was Fe2O3 or Fe3O4 under aerobic conditions. The adsorption ratios of Tc on Fe, Fe2O3 and Fe3O4 decreased with the increase of pH in the range of 5-12 and increased with the decrease of the CO32- concentration in the range of 10-8M-10-2M under anoxic conditions. Tc existed mainly in the form of Tc(IV) after equilibrium when Fe, Fe2O3 and Fe3O4 was the adsorbent under anoxic conditions. The adsorption isotherms of TcO4- on the adsorbers Fe, Fe2O3 and Fe3O4 are fairly in agreement with the Freundlich’s equation under both aerobic and anoxic conditions.  相似文献   

6.
7.
This investigation examines the magnetorheological (MR) characteristics of Fe3O4 aqueous suspensions. Magnetite particles (Fe3O4) were synthesized using a colloidal process and their sizes were determined to be normally distributed with an average of 10 nm by TEM. Experimental results reveal that the MR effect increases with the magnetic field and suspension concentration. The yield stress increases by up to two orders of magnitude when the sample is subjected to a magnetic field of 146 Oe/mm. In comparison with other published results, concerning a concentration of approximately 10–15% v/v, this study demonstrates that the same increase can be obtained with a concentration of nano-scale particles as low as 0.04% by volume. The viscosity was increased by an order of magnitude while the shear rate remained low; however, the increase decayed rapidly as the shear rate was raised. Finally, the MR effect caused by DC outperformed that caused by AC at the same current.  相似文献   

8.
Summary Titania-based photocatalytic materials were prepared by sol-gel method using Fe3+ and polyethyleneglycol (PEG600) as additives. Thermogravimetry (TG), differential thermal analysis (DTA) and evolved gas analysis (EGA) with MS detection were used to elucidate processes that take place during heating of Fe3+ containing titania gels. The microstructure development of the Fe2O3/TiO2 gel samples with and without PEG600 admixtures was characterized by emanation thermal analysis (ETA) under in situ heating in air. A mathematical model was used for the evaluation of ETA results. Surface area and porosity measurements of the samples dried at 120°C and the samples preheated for 1 h to 300 and 500°C were compared. From the XRD measurements it was confirmed that the crystallization of anatase took place after thermal heating up to 600°C.  相似文献   

9.
The reaction of Bi2O3 + Fe2O3 mixtures with chlorine and SO2 at 250–700°C is studied. At 300–500°C, the degree of bismuth chloride sublimation from the oxide mixture increases in the presence of SO2. Chemical sublimation of FeCl3 occurs after BiCl3 is virtually completely recovered from the solid phase.  相似文献   

10.
Water-soluble Mn3O4 nanocrystals have been prepared through thermal decomposition in a high temperature boiling solvent, 2-pyrrolidone. The final product was characterized with XRD, SEM, TEM, FTIR and Zeta Potential measurements. Average crystallite size was calculated as ∼15 nm using XRD peak broadening. TEM analysis revealed spherical nanoparticles with an average diameter of 14±0.4 nm. FTIR analysis indicated that 2-pyrrolidone coordinates with the Mn3O4 nanocrystals only via O from the carbonyl group, thus confining their growth and protecting their surfaces from interaction with neighboring particles.   相似文献   

11.
The synthesis of rattle-type nanostructured Fe3O4@SnO2 is described along with their application to dispersive solid-phase extraction of trace amounts of mercury(II) ions prior to their determination by continuous-flow cold vapor atomic absorption spectrometry. The voids present in rattle-type structures make the material an effective substrate for adsorption of Hg(II), and also warrant high loading capacity. The unique morphology, large specific surface, magnetism property and the synergistic effect of magnetic cores and SnO2 shells render these magnetic nanorattles an attractive candidate for solid-phase extraction of heavy metal ions.The sorbent was characterized by transmission electron microscopy, scanning electron microscopy, FTIR, energy-dispersive X-ray spectroscopy and by the Brunnauer-Emmett-Teller technique. The effects of pH value, adsorption time, amount of sorbent, volume of sample solutions, concentration and volume of eluent on extraction efficiencies were evaluated. The calibration plot is linear in the 0.1 to 40 μg·L?1 concentration range, and the preconcentration factor is 49. The detection limit is 28 ng·L?1. The sorbent was applied to the analysis of (spiked) river and sea water samples. Recoveries ranged from 97.2 to 100.5%.
Graphical abstract A yolk-shell structure based on a Fe3O4 core and SnO2 shell was developed as an efficient MSPE sorbent. A middle silica layer was etched by alkaline solution. The resulting sorbent was utilized for preconcentration of mercury ions from aqueous media.
  相似文献   

12.
Chemical looping combustion (CLC) by direct use of coal as fuel is promising with its prominent advantages, but insufficient conversion of coal in the CLC system is a great limitation. In this research, in order to explore the limiting factor inherent for coal conversion in the CLC system, from the perspective of chemical structure of coal, reaction of a selected Chinese typical coal (designated as LZ) with Fe2O3 was systematically investigated. Thermogravimetric investigation of LZ coal reaction with Fe2O3 at the oxygen excess number Φ = 1.0 indicated that after dehydration, there existed three discernible reaction stages as observed, which were attributed to the combined reactions of Fe2O3 with the primary and secondary gaseous products evolved from LZ coal. Meanwhile, the Fe2O3 provided should be controlled around Φ = 1.0 aiming at effective conversion of LZ coal and simultaneous proper utilization of Fe2O3. And then, both gaseous Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy analysis of the gaseous and solid products formed from reaction of LZ coal with Fe2O3 at Φ = 1.0 indicated that full conversion of LZ coal was not reached with a little unconverted CO occurring, though partial Fe2O3 was over reduced to lower valence of oxides than Fe3O4. Furthermore, in order to explore the insufficient conversion of LZ coal at the molecular scale, X-ray photoelectron spectroscopy analysis revealed the distribution and evolution of the carbon functional groups involved in LZ coal after its reaction with Fe2O3 and further found that effective conversion of the aromatic/aliphatic C=C/C–H groups in LZ coal was the rate-limited step at the molecular scale with the relative content of these groups still dominated around 59% after LZ coal reaction with Fe2O3. Finally, solid IR (infrared) analysis and quantitative evaluation of the solid products of LZ coal reaction with Fe2O3 indicated that the length of aliphatic C–H groups decreased due to its partial disintegration, while the aromatization of the residual char was aggravated with the higher relative IR intensity ratio of the aromatic C=C groups, which reduced the reactivity of LZ residual char and hindered the full conversion of LZ coal.  相似文献   

13.
Peculiarities of electrochemical behavior of the Fe3O4 magnetic nanoparticles immobilized on the surface of a platinum electrode in aprotic organic media were investigated. Possible scheme of electrochemical behavior of nanoparticles depending on pre-electrolysis potential (–1.3,–2.5 V) was suggested. The effect of pre-electrolysis time, potential scan rate and nature of supporting electrolyte on the processes investigated was determined. A linear dependence of electrochemical oxidation signal versus the concentration of nanoparticles in modifying suspension in the concentration range of 0.05—0.5 g L–1 was observed. The results of the performed research allow using magnetite nanoparticles as a direct signal-generating label in electrochemical immunoassay.  相似文献   

14.
An electrochemical microsensor for chloramphenicol (CAP) was fabricated by introducing magnetic Fe3O4 nanoparticles (NPs) onto the surface of activated carbon fibers. This microsensor exhibited increased electrochemical response toward CAP because of the synergetic effect of the Fe3O4 NPs and the carbon fibers. Cyclic voltammograms were acquired and displayed three stable and irreversible redox peaks in pH 7.0 solution. Under optimized conditions, the cathodic current peaks at ?0.67 V (vs. Ag/AgCl). The calibration plot is linear in the 40 pM to 1 μM CAP concentration range, with a 17 pM detection limit (at a signal-to-noise ratio of 3). The sensor was applied to the determination of CAP in spiked sediment samples. In our perception, this electrocatalytic platform provided a useful tool for fast, portable, and sensitive analysis of chloramphenicol.
Graphical abstract A sensitive carbon fiber microsensor modified with Fe3O4 nanoparticles is found to display two cathodic peaks when detecting chloramphenicol at 100 mV·s?1 and at pH 7.0. The sensor was applied to the determination of chloramphenicol in sediment samples.
  相似文献   

15.
Cobalt zinc ferrite, Co0.8Zn0.2Fe2O4, nanoparticles have been synthesized via autocatalytic decomposition of the precursor, cobalt zinc ferrous fumarato hydrazinate. The X-ray powder diffraction of the ‘as prepared’ oxide confirms the formation of single phase nanocrystalline cobalt zinc ferrite nanoparticles. The thermal decomposition of the precursor has been studied by isothermal, thermogravimetric and differential thermal analysis. The precursor has also been characterized by FTIR, and chemical analysis and its chemical composition has been determined as Co0.8Zn0.2Fe2(C4H2O4)3·6N2H4. The Curie temperature of the ‘as-prepared oxide’ was determined by AC susceptibility measurements.  相似文献   

16.
The authors describe an aptamer-based fluorescent assay for adenosine (Ade). It is based on the interaction between silver nanoparticles (AgNPs) and CdTe quantum dots (QDs). The beacon comprises a pair of aptamers, one conjugated to Fe3O4 magnetic nanoparticles, the other to AgNPs. In the presence of Ade, structural folding and sandwich association of the two attachments takes place. After magnetic separation, the associated sandwich structures are exposed to the QDs. The AgNPs in sandwich structures act as the signaling label of Ade by quenching the fluorescence of QDs (at excitation/emission wavelengths of 370/565 nm) via inner filter effect, electron transfer and trapping processes. As a result, the fluorescence of QDs drops with increasing Ade concentration. The assay has a linear response in the 0.1 nM to 30 nM Ade concentration range and a 60 pM limit of detection. The assay only takes 40 min which is the shortest among the aptamer-based methods ever reported. The method was successfully applied to the detection of Ade in spiked biological samples and satisfactory recoveries were obtained.
Graphical abstract Schematic of a highly efficient and convenient adenosine (Ade) fluorometric assay. It is based on the interaction between Ag nanoparticles (NPs) and CdTe quantum dots (QDs). Ade aptamers (ABA1 and ABA2) are used as recognition unit and Fe3O4 magnetic nanoparticles act as magnetic separator. The assay exhibits superior sensitivity and speediness.
  相似文献   

17.
Stabilization of oil-in-water Pickering emulsions with SiO2 and Fe3O4 nanoparticles has been studied. Emulsions containing three-dimensional gel networks formed by aggregated nanoparticles in the dispersion media have been shown to be stable with respect to flocculation, coalescence, and creaming. Concentration ranges in which emulsions are kinetically stable have been determined. Stabilization with mixed Ludox HS-30 and Ludox CL SiO2 nanoparticles leads to the formation of stable emulsions at a weight ratio between the nanoparticles equal to 2 and pH 6.7. In the case of stabilization with Ludox CL and Fe3O4 nanoparticles, systems resistant to aggregation and sedimentation are obtained at pH 8. The use of mixed Ludox HS-30 and Fe3O4 nanoparticles has not resulted in the formation of emulsions stable with respect to creaming, with such emulsions appearing to be resistant only to coalescence at pH 2–6.  相似文献   

18.
A physicochemical study of glasses based on the MO-Bi2O3-B2O3 and SrO-Bi2O3-B2O3 systems was performed. Glass formation regions were found. The structural and optical properties, as well as the thermal behavior of the glasses, were studied.  相似文献   

19.
Ultrafine magnetite particles are prepared through an electrochemical process, at room temperature, from an iron-based electrode immersed in an alkaline aqueous medium containing complexing compounds. XRD and chemical analysis indicate that the product is pure magnetite, Fe3O4. The size and morphology of the particles are studied by SEM. The magnetite nanoparticles present a magnetoresistance of almost 3%, at 300 K, under a magnetic field of 1 T. A reactive mechanism for the electrochemical process is proposed.  相似文献   

20.
Nanobiotechnology has opened a new and exciting opportunities for exploring urea biosensor based on magnetic nanoparticles (NPs) mainly Fe3O4 and Co3O4. These NPs have been extensively exploited to develop biosensors with stability, selectivity, reproducibility and fast response time. This review gives an overview of the development of urea biosensor based on Fe3O4 and Co3O4 for in vitro diagnostic applications along with significant improvements over the last few decades. Additionally, effort has been made to elaborate properties of magnetic nanoparticles (MNPs) in biosensing aspects. It also gives details of recent developments in hybrid nanobiocomposite based urea biosensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号