首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The ever increasing demands on properties of materials creates a trend also towards ultrapure products. Characterization of these materials is only possible with modern, highly sophisticated analytical techniques such as activation analysis and mass spectrometry, particularly SSMS, SIMS and GDMS [1].Analytical strategies were developed for the determination of about 40 elements in a tungsten matrix with high-performance SIMS. Difficulties like the elimination of interferences had to be overcome. Extrapolated detection limits were established in the range of pg/g (alkali metals, halides) to ng/g (e. g., Ta, Th).Depth profiling and ion imaging gave additional information about the lateral and the depth distribution of the elements.
Multielementepurenanalyse in Wolfram mittels SIMS
  相似文献   

2.
A method for the quantatitive determination of pethidine in human urine by liquid secondary ion and tandem mass spectrometry is presented. Quantification was carried out by using ketamine as internal standard. It was found that the collision-induced dissociation (CID) spectrum of the [M + H]+ ion of pethidine exhibited a prominent daughter ion at m/z 220 and ketamine also yielded the same daughter ion at m/z 220. For ((quadrupole)) quantitative analysis, the first quadrupole mass filter was set to transmit m/z 220 and a narrow-range magnet scan yielded a spectrum of parents, including m/z 238 and 248, correspending to ketamine and pethidine, respectively.  相似文献   

3.
New on-line analytical system coupling thin layer chromatography (TLC) and high selective identification unit-time of flight secondary ion mass spectrometry (TOF-SIMS) is introduced in this article. Chromatographic mixture separation and analyte surface deposition followed with surface TOF-SIMS analysis on-line allows to identify the analytes at trace and ultratrace levels. The selected analytes with different detectability and identification possibility were analysed in this hyphenated unit (Methyl Red indicator, Terpinolen and Giberrelic acid). Here, the chromatographic thin layer plays a universal role: separation unit, analyte depositing surface and TOF-SIMS interface, finally. Two depositing substrates and TOF-SIMS compatible interfaces were tested in above-mentioned interfacing unit: modified aluminium backed chromatographic thin layer and monolithic silica thin layer. The sets of positive and negative ions TOF-SIMS spectra obtained from different SIMS modes of analysis were used for analyte identification purposes. SIMS enables analyte detection with high mass resolution at the concentration level that is not achieved by other methods.  相似文献   

4.
Through analyzing mixtures of compounds of known gas-phase basicities, the importance of this property on the secondary ions emitted from a surface under primary ion bombardment is investigated. The aim is to obtain a greater understanding of the ionization mechanisms that occur in secondary ion mass spectrometry (SIMS). The commonly used matrix assisted laser desorption/ionization (MALDI) matrix 2,4,6-trihydroxyacetophenone (THAP) and a range of low molecular weight biomolecules were used to investigate whether analyte/matrix suppression effects that have been observed in analogous MALDI experiments were also present in static-SIMS. The outcome of the experiments demonstrates that strong suppression of the quasi-molecular signal of one molecule in a mixture can occur due to the presence of the other, with the gas-phase basicity of the compounds being a good indicator of the secondary ions detected. It is also demonstrated that the suppression of the quasi-molecular ion signal of a compound in a two-component mixture can be minimized by the inclusion of a third compound of suitable gas-phase basicity.  相似文献   

5.
This paper presents a set of data which compares the potential and limitations of laser microprobe mass spectrometry (TOF-LMMS and FT-LMMS) and static secondary ion mass spectrometry (S-SIMS) for inorganic speciation at a microscopical level. In general LMMS yields prominent signals of adduct ions consisting of the intact molecule combined with a stable ion, which allows a direct identification of the analyte. S-SIMS also yields abundant diagnostic signals to specify the molecular composition. However, adduct ions are not always present, which means that the identification often relies on fingerprinting. Results further indicate that the potential and the application area of S-SIMS and FT-LMMS are complementary to one another.  相似文献   

6.
7.
The natural variation of the oxygen isotopic composition is used among geologists to determine paleotemperatures and the origin of minerals. In recent studies, oxygen isotopic composition has been recognized as a possible tool for identification of the origin of seized uranium oxides in nuclear forensic science. In the last 10 years, great effort has been made to develop new direct and accurate n(18O)/n(16O) measurements methods. Traditionally, n(18O)/n(16O) analyses are performed by gas mass spectrometry. In this work, a novel oxygen isotope analysis by thermal ionization mass spectrometry (TIMS), using metal oxide ion species (UO+), is compared to the direct methods: glow discharge mass spectrometry (GDMS) and secondary ion mass spectrometry (SIMS). Because of the possible application of the n(18O)/n(16O) ratio in nuclear forensics science, the samples were solid, pure UO2 or U3O8 particles. The precision achieved using TIMS analysis was 0.04%, which is similar or even better than the one obtained using the SIMS technique (0.05%), and clearly better if compared to that of GDMS (0.5%). The samples used by TIMS are micrograms in size. The suitability of TIMS as a n(18O)/n(16O) measurement method is verified by SIMS measurements. In addition, TIMS results have been confirmed by characterizing the n(18O)/n(16O) ratio of UO2 sample also by the traditional method of static vacuum mass spectrometry at the University of Chicago.  相似文献   

8.
Understanding the influence of molecular environment on phospholipids is important in time-of-flight secondary ion mass spectrometry (TOF-SIMS) studies of complex systems such as cellular membranes. Varying the molecular environment of model membrane Langmuir-Blodgett (LB) films is shown to affect the TOF-SIMS signal of the phospholipids in the films. The molecular environment of a LB film of dipalmitoylphosphatidylcholine (DPPC) is changed by varying the film density, varying the sample substrate, and the addition of cholesterol. An increase in film density results in a decrease in the headgroup fragment ion signal at a mass-to-charge ratio of 184 (phosphocholine). Varying the sample substrate increases the secondary ion yield of phosphocholine as does the addition of proton-donating molecules such as cholesterol to the DPPC LB film. Switching from a model system of DPPC and cholesterol to one of dipalmitoylphosphatidylethanolamine (DPPE) and cholesterol demonstrates the ability of cholesterol to also mask the phospholipid headgroup ion signal. TOF-SIMS studies of simplistic phospholipid LB model membrane systems demonstrate the potential use of these systems in TOF-SIMS analysis of cells.  相似文献   

9.
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) provides a method of elemental analysis that can distinguish among automotive paint samples of the same or nearly the same color. TOF-SIMS survey spectra were employed to determine the relative abundances of elements in the surface layers of the paint chips. The depth profile of paint samples permitted the analysis of small paint chips, the reproducible results for specific elements, and the identification of each car paint. Seventy-three samples of blue, red, white, and silver automobile paints from the major manufacturers in Korea were investigated using high resolution TOF-SIMS technique. It was found that paints of the same color produced by different manufacturers could be distinguished by this technique. TOF-SIMS is a reliable, nondestructive, and small area analyzing method for characterization of the elemental composition of automotive paint chips.  相似文献   

10.
The application of image processing in secondary ion mass spectrometry is discussed. The Cameca 4f SIMS uses a single microchannel plate and a highly sensitive camera in combination with an image processor with real time capabilities (Kontron IBAS). An automation procedure with image integration, extended dynamic range image acquisition and retro depth profiling is presented and illustrated with practical applications.  相似文献   

11.
In this study, we used secondary electrospray ionization mass spectrometry assisted by an ion funnel (IF) operating at ambient pressure to find compounds in the mass range of 100–500 m/z in online breath fingerprinting experiments. In low‐resolution experiments conducted on an ion trap instrument, we found that pyridine is present in breath of individuals long after drinking coffee. In high‐resolution experiments conducted on a Fourier transform ion cyclotron resonance, we found more than 30 compounds in the mass range of 100–500 m/z in analogous online breath experiments. More than a third of these compounds have molecular weights above 200 Daltons and have not been mentioned in previous studies. In low‐resolution experiments as well as experiments without the IF, these compounds could not be detected. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Reactive Blue 19 (RB 19), its reactive form (RB 19-VS) and its hydrolyzed form (RB 19-OH) were examined using liquid secondary ion mass spectrometry/tandem mass spectrometry (LSIMS/MS/MS) in the negative-ion mode under low-energy collision conditions (240–300 eV). Structurally characteristic fragment ions were obtained, none of which has been previously reported for these reactive dyes. Among the ions obtained were SO3? ions, ions due to central amino cleavage and reactive group cleavage, and ions due to loss of SO3 and SO2. Possible pathways for the formation of product ions are proposed. The structural information obtained should help to characterize and identify reactive dyes better.  相似文献   

13.
The focus of this review is on trace-element quantitation of microstructures in solids. This review is aimed at the nonspecialist who wants to know how secondary ion mass spectrometry (SIMS) quantitation is achieved. Despite 35 years of SIMS research and applications, SIMS quantitation remains a fundamentally empirical enterprise and is based on standards. The most used standards are "bulk standards"-solids with a homogeneous distribution of a trace element-and ion-implanted solids. The SIMS systematics of bulk standards and ion-implanted solids are reviewed.  相似文献   

14.
Speciation analysis of inorganic solids, without dissolution of the sample, aims at specific molecular information. Two potentially useful microanalytical techniques emerge, namely, laser microprobe mass spectrometry (LMMS) and static secondary ion mass spectrometry (S-SIMS). This paper focuses on the molecular characterisation of oxides by application of the S-SIMS method. For this purpose, mass spectra of pure oxides were acquired under static conditions. Analytical parameters such as repeatability, accuracy and resolution were assessed. Also, the peak patterns in the mass spectra are discussed in connection with the older Plog model, describing the relative ion yield as a function of the cluster size. Finally, a comparison is made with the mass spectra from a S-SIMS library and with those obtained by Fourier transform LMMS. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   

15.
A method to increase useful yields of organic molecules is investigated by cluster secondary ion mass spectrometry (SIMS). Glycerol drops were deposited onto various inkjet‐printed arrays and the organic molecules in the film were rapidly incorporated into the drop. The resulting glycerol/analyte drops were then probed with fullerene primary ions under dynamic SIMS conditions. High primary ion beam currents were shown to aid in the mixing of the glycerol drop, thus replenishing the probed area and sustaining high secondary ion yields. Integrated secondary ion signals for tetrabutylammonium iodide and cocaine in the glycerol drops were enhanced by more than a factor of 100 compared with an analogous area on the surface, and a factor of 1000 over the lifetime of the glycerol drop. Once the analyte of interest is incorporated into the glycerol microdrop, the solution chemistry can be tailored for enhanced secondary ion yields, with examples shown for cyclotrimethylenetrinitramine (RDX) chloride adduct formation. In addition, depositing localized glycerol drops may enhance analyte secondary ion count rates to high enough levels to allow for site‐specific chemical maps of molecules in complex matrices such as biological tissues. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

16.
Summary A direct combination of thin-layer chromatography with secondary ion mass spectrometry (TLC/SIMS) provides a method for the quantitative analysis of thermally unstable compounds or compounds of low volatility such as nicergoline. The method is very simple and has excellent precision. The analysis was performed by using an aluminium TLC plate and a mixture of methylene chloride, acetone, and distilled water as a developing solvent. After development the portion of the plate with the nicergoline and the internal standard spots was cut off the TLC plate, and was attached to the SIMS holder directly. The amount of nicergoline was determined from the ratio of the fragment ion intensity of the nicergoline to the internal standard. The calibration curve was linear, and the detection limit was 10 ng at a signal-to-noise ratio of 5. This method should be considered for application to the determination of drugs in biological samples and also for the determination of possible impurities and decomposition products in drugs.  相似文献   

17.
Atomic as well as molecular secondary ions are emitted from the uppermost monolayer of a solid during ion bombardment. Mass analysis of these positive and negative secondary ions supplies detailed information on the chemical composition of the bombarded surface. High mass range (> 10,000 u), high mass resolution (m/Δm > 10,000), accurate mass determination (ppm range) and high sensitivity (ppm of a monolayer) are achieved by applying time-of-flight (TOF) mass analyzers. TOF-SIMS has been successfully applied to a wide variety of polymer materials, including polymer blends, chemically or plasma modified surfaces, and plasma polymerization layers. Detailed information on the composition of repeat units, endgroups, oligomer distributions, additives, as well as surface contaminants can be obtained. Basic concepts of TOF-SIMS will be described and typical analytical examples for the characterization of polymer materials will be presented.  相似文献   

18.
Time-of-flight static secondary ion mass spectrometry (TOF-S-SIMS) was used to characterize thin layers of oxy- and thiocarbocyanine dyes on Ag and Si. Apart from adduct ions a variety of structural fragment ions were detected for which a fragmentation pattern is proposed. Peak assignments were confirmed by comparing spectra of dyes with very similar structures. All secondary ions were assigned with a mass accuracy better than 50 ppm. The intensity of molecular ions as well as fragment ions has been studied as a function of the type of organic dye, the substrate, the layer thickness and the type of primary ion. A large yield difference of two orders of magnitude was observed between the precursor ions of cationic carbocyanine dyes and the protonated molecules of the anionic dyes. Fragment ions, on the other hand, yielded similar intensities for both types of dye. As the dye layers deposited on an Ag substrate yielded higher secondary ion intensities than those deposited on a Si substrate, the Ag metal clearly acts as a promoting agent for secondary ion formation. The effect was more pronounced for precursor signals than for fragment ions. The promoting effect decreased as the deposited layer thickness of the organic dye layer was increased.  相似文献   

19.
Tandem mass spectrometry measurements have been achieved using time-of-flight secondary ion mass spectrometry (TOF-SIMS) and a post source decay (PSD)-like method. The performance of the method has been demonstrated on model molecules with well-known fragmentation pathways. Several lipids have been fragmented including the phosphocholine ion, phosphatidylcholines, cholesterol and vitamin E. Pure samples were analyzed, and the results compared with those obtained with the same compounds on a quadrupole-TOF hybrid mass spectrometer. Then, the structures of some lipids which are currently observed in the TOF-SIMS imaging of mammalian tissue sections were verified.  相似文献   

20.
Summary A procedure for SIMS semiquantitative analysis, based on the use of one fitting-parameter, has been applied to metal and mineral standards with satisfactory results. Values of this parameter for various matrices are given, and prospects for analyses involving no reference elements are discussed. Analytical accuracies obtainable for individual elements are assessed in terms of matrix-independent error factors.
Zusammenfassung Eine Methode zur semiquantitativen SIMS-Analyse, die im Gegensatz zu den aus der Literatur bekannten Verfahren nur einen Anpassungsparameter benötigt, wurde mit gutem Erfolg an Metall- und Mineralstandards getestet. Werte des Anpassungsparameters für verschiedene Matrices wurden angegeben und Aussichten für eine Weiterentwicklung dieser Methode in Richtung auf standardfreie Analysen wurden besprochen. Die analytische Richtigkeit für einige Elemente wurde mit Hilfe von matrixunabhängigen Fehlerfaktoren abgeschätzt.


Presented at the International Symposium on Microchemical Techniques 1977, Davos, May 1977.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号