首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The role of nitrate ions in uranyl ions transport across TBP-kerosene oil supported liquid membranes (SLM) at varied concentrations of HNO3 and NaNO3 has been studied. It has been found that nitrate ions move faster compared to uranyl ions at the uranium feed solution concentrations studied. The nitrate to uranyl ions flux ratio vary from 355 to 2636 under different chemical conditions. At low uranium concentration the nitrate ions transport as HNO3 · TBP, in addition to as UO2(NO3)2 · 2TBP type complex species. The flux of nitrate ions is of the order of 12.10 · 10–3 mol · m–2 · s–1 compared to that of uranium ions (4.56 · 10–6 mol · m–2 · s–1). The permeability coefficient of the membrane for nitrate ions varies with chemical composition of the feed solution and is in the order of 2.5 · 10–10 m–2 · s–1. The data is useful to estimate the nitrate ions required to move a given amount of uranyl ions across such an SLM and in simple solvent extraction.  相似文献   

2.
This paper describes the experimental results obtained at the transport of 5-aminosalicylic acid (5ASA) through agitated bulk liquid membrane, using Aliquat 336, as carrier, dissolved in a chloroform membrane. The influence of 5-aminosalicylic acid concentration in the feed source, HCl concentration in the stripping phase and carrier (Aliquat 336) concentration in the membrane were investigated. The optimal pH condition of feed source was established based on the speciation diagram of 5-aminosalicylic acid. The assessment of the transport process was performed by determining the kinetic parameters—mass transfer coefficient and entrance and exist flow in and out of the chloroform membrane.  相似文献   

3.
Piroxicam was found to be a highly selective carrier for uphill transport of Cu2+ ions through a chloroform liquid membrane. The transport occurs via a counterflow of protons from the receiving phase to the source phase. The effects of several parameters on the transport of Cu2+ ions, such as the carrier concentration, pH of the source phase, composition of the receiving phase, and duration are described. A high transport efficiency (98±2%) was provided by the carrier for Cu2+ ions in a receiving phase of 0.01 mol l−1 sulfuric acid after 4 h. Different metal ion transport experiments showed that Cu2+ ions were selectively transported over other ions, such as Co2+, Ni2+, Cd2+, Pb2+, Zn2+, UO22+ and ZrO22+. In the presence of fluoride ions (used as a suitable masking agent in the source phase), the interfering effects of UO22+ and ZrO22+ ions were eliminated. The applicability of the method was tested on a real sample, and the results obtained show that it is potentially useful for solvent extraction of copper.  相似文献   

4.
Cox JA  Bhatnagar A  Francis RW 《Talanta》1986,33(9):713-716
When two aqueous solutions are separated by a liquid membrane that contains a complexing agent which is a conjugate base of a weak acid, a metal ion can be transported from the solution of the higher pH against its concentration gradient into the more acidic solution. With Cu(II) as the analyte and a liquid membrane consisting of a mixture of oximes dissolved in kerosene, enrichment factors for a prescribed dialysis time in a simple experimental apparatus were nearly independent of Cu(II) concentration over the range 10(-4)-10(-7)M. With 0.1M hydrochloric acid as the receiver, the enrichment factor was independent of ionic strength and of sample pH in the range 4-9. The effect of sample pH on the interference of Fe(III) was examined. With a pH-2.5 formate buffer, the enrichment factor for Cu(II) decreased as the Fe(III) concentration increased, but in a pH-9.3 ammonium buffer, 0.14 mM Fe(III) did not interfere with the transport of Cu(II) from a 16muM copper sample.  相似文献   

5.
Cox JA  Bhatnagar A 《Talanta》1990,37(11):1037-1041
A liquid membrane comprising 5-10% bis(2,4,4-trimethylpentyl)phosphinic acid in dodecane that is supported between an aqueous sample at pH 4.7-6.0 and a 0.1M HCl receiver results in uphill transport of Zn(II) from the sample into the receiver. With 2 ml of receiver, a 5 cm(2) membrane and 60 min dialysis time, Zn(II) is preconcentrated by a factor of ca. 13 when the initial concentration in the sample is in the range 1.5 x 10(-7)-1.5 x 10(-4)M. The enrichment factor is directly proportional to time up to 30 min since the transport rate of Zn(II) across the membrane is constant over this period. At longer times the flux is slowed as the system begins to approach equilibrium. The presence of other metals such as Cu(II), Co(II), Ni(II), Cd(II), Pb(II) and Fe(II) does not change the enrichment factor for Zn(II), even when the interferent is at a concentration high enough for the rate of transport (nmole/min) of the interferent and Zn(II) to be about the same. The flux of Zn(II) was about 40 times that of Cu(II) and 100 times that of Co(II) when their concentrations in the sample were equal. The other metal ions examined are not significantly transported.  相似文献   

6.
To establish how charged species move from water to the nonpolar membrane interior and to determine the energetic and structural effects accompanying this process, we performed molecular dynamics simulations of the transport of Na+ and Cl- across a lipid bilayer located between two water lamellae. The total length of molecular dynamics trajectories generated for each ion was 10 ns. Our simulations demonstrate that permeation of ions into the membrane is accompanied by the formation of deep, asymmetric thinning defects in the bilayer, whereby polar lipid head groups and water penetrate the nonpolar membrane interior. Once the ion crosses the midplane of the bilayer the deformation "switches sides"; the initial defect slowly relaxes, and a defect forms in the outgoing side of the bilayer. As a result, the ion remains well solvated during the process; the total number of oxygen atoms from water and lipid head groups in the first solvation shell remains constant. A similar membrane deformation is formed when the ion is instantaneously inserted into the interior of the bilayer. The formation of defects considerably lowers the free energy barrier to transfer of the ion across the bilayer and, consequently, increases the permeabilities of the membrane to ions, compared to the rigid, planar structure, by approximately 14 orders of magnitude. Our results have implications for drug delivery using liposomes and peptide insertion into membranes.  相似文献   

7.
A liquid membrane was prepared by entrapping tributyl phosphate (TBP) in a cellulose triacetate (TAC) membrane matrix. The membrane was used to separate two aqueous solutions, one acidic and the other alkaline, which were saturated with TBP to prevent its loss from the membrane. Uphill transport of uranium was achieved with the TBP liquid membrane. Both solutions containing TBP were stirred magnetically. When the initial concentration of uranium in the two solutions was 3.5 mM, more than 50% of the uranium contained in the acidic solution was transported to the alkaline solution across the liquid membrane within 5 h. A transport mechanism is described in which the membrane-bound TBP acts as a mobile carrier for uranium.  相似文献   

8.
The capacity of polyelectrolytes (PELs) to enhance the metal ion retention in a double emulsion system (DES) was studied by diafiltration. Our results indicate that PELs can increase the maximum retention capacity of DES as functional groups of polymer are being saturated. Increase of retention can be explained by interaction between reverse emulsion globules and metal?Cpolymer species formed in solution. Assuming an inert membrane, if the amount of added metal ion is lower than the polymer??s maximum retention capacity, then the retention system behaves as if the polymer was the single retainer element in the filtration cell. For poly(acrylic acid), retention/adsorption and transport/regeneration processes were strongly associated to changes in hydrophilic?Clipophilic balance of polymer chains; whereas for poly(vinyl sulfonic acid) and poly(sodium 4-styrensulfonate), these processes were mainly associated to screening of surface charge density of macromolecule in solution.  相似文献   

9.
In the theoretical model it is assumed that a graphite disk electrode is covered by a thin film of solution of decamethylferrocene (dmfc) and some electrolyte CX in nitrobenzene and immersed in an aqueous solution of the electrolyte MX. Oxidation of dmfc is accompanied by the transfer of anion X from water into nitrobenzene since it is also assumed that cations dmfc + and C + are insoluble in water and cation M + is insoluble in nitrobenzene. Kinetic parameters of the electrode reaction can be determined if the total potential difference across the nitrobenzene/water interface is maintained constant by adding the electrolytes CX and MX in concentrations which are much higher than the initial concentration of dmfc in nitrobenzene.  相似文献   

10.
A new efficient system for transporting saccharides through a liquid membrane has been constructed. The transport rates of saccharides were accelerated greatly by the cyclodextrin dimer 2; by contrast, the corresponding cyclodextrin monomer 1 was not effective at mediating saccharide transport. The transport rate of D-ribose through a chloroform liquid membrane was 17 times faster when the cyclodextrin dimer 2 was used as the transporter than when the cyclodextrin monomer 1 was used. Similarly the transport rate of methyl D-galactopyranoside was 16 times faster by 2 than by 1.  相似文献   

11.
Competitive transport experiments involving Fe+3, Cr+3, Ni+2, Co+2, Ca+2, Mg+2 and K+ metal cations from an aqueous source phase through some organic membranes into an aqueous receiving phase have been carried out using 4,13-diaza-18-crown-6 (kryptofix 22) as an ionophore present in the organic membrane phase. Fluxes and selectivities for competitive of the metal cations transport across bulk liquid membranes have been determined. A good selectivity was observed for K+ cation by kryptofix 22 in 1,2-dichloroethane (1,2-DCE) membrane system. The sequence of selectivity for potassium ion in the organic solvents was found to be: 1,2-DCE > DCM (dichloromethane) >CHCl3. The transport of K+ cation was also studied in the DCM-1,2-DCE, CHCl3-1,2-DCE and CHCl3-DCM binary mixed solvents as membrane phase. A non-linear relationship was observed between the transport rate of K+ ion and the composition of these binary mixed solvents. The amount of K+ transported follows the trend: DCM-DCE > CHCl3-DCE > CHCl3-DCM in the bulk liquid membrane studies. Then, the selective transport of K+ cation through a DCM-1,2-DCE bulk liquid membrane was studied by kryptofix 22 as an efficient carrier. The highest transport efficiency was obtained by investigating the influence of different parameters such as the concentration of kryptofix 22 in the membrane phase, pH of the source and the receiving phases and the equilibrium time of the transport process. Maximum transport value of 71.62 ± 1.61% was observed for K+ ion after 4 hours, when its concentration was 4 × 10–3 M.  相似文献   

12.
A chloroform membrane system containing a given mixture of ketoconazole and oleic acid was applied for the uphill transport of Cd2+ ions as CdI42-. In an HCl medium the ligand could form a stable ion-pair with CdI4(2-), which was readily extractable in the membrane phase. A weak basic solution (pH 8) was used as a suitable stripping medium for the quantitative transport of cadmium across the liquid membrane after 120 min. The selectivity and efficiency of Cd2+ transport from an aqueous solution containing other cations, such as Co2+, Cr3+, Ni2+, Fe2+, Mn2+, Pd2+ and Zn2+ ions, were investigated. It was found that none of these cations interfered with Cd2+ transport.  相似文献   

13.
Kinetically controlled electro-oxidation of a redox probe dissolved in the organic solvent, which is interposed between an electrode surface and an aqueous solution as a thin layer, is analyzed theoretically. It is demonstrated that the electrode reaction rate constant can be measured by the variation of scan rate in linear scan voltammetry both in the absence and in the superfluity of the supporting electrolyte dissolved in the film.Dedicated to Professor Dr. Alan M. Bond on the occasion of his 60th birthday  相似文献   

14.
In this paper, the effect of a coadsorbed polyanion–cationic surfactant system on the transport of tetraethylammonium ion across the water|1,2-dichloroethane interface is studied. It is shown that the change in double-layer structure due to the presence of adsorbed or coadsorbed surfactant can explain the experimental observations, thus concluding that no other effects on ion transfer (e.g., steric hindrance) are relevant under these experimental conditions. The implications of these results are discussed.  相似文献   

15.
16.
Synergistic extraction of uranyl ion with acylpyrazolones such as 1-phenyl-3-methyl-4-trifluoroacetylpyrazolone-5 (HPMTFP, pKa=2.7), 1-phenyl-3-methyl-4-acetylpyrazolone (HPMAP, pKa=3.8) or 1-phenyl-3-methyl-4-benzoylpyrazolone-5 (HPMBP, pKa=4.2) in combination with dicyclohexano-18-crown-6 (DC-18-C6) has been studied at various fixed temperatures. The results indicate that the equilibrium constants of the organic phase addition reaction, log Ks, at 30°C are almost constant, viz., 2.72, 2.69 and 2.84, respectively, for the above three systems. The similarity and low log Ks values with DC-18-C6 as compared with TBP systems with these pyrazolones appears to arise due to the limitation to the approach of the large crown ether molecule in bonding with the uranyl chelate. This is in contrast to the fact that the relative basicities of the two donors (equilibrium constant for nitric acid uptake) are comparable. Thermodynamic data for chelate extraction with HPMTFP evaluated by the temperature coefficient method indicates that a hydrated chelate is extracted into the organic phase. Also, the organic phase addition reaction with DC-18-C6 is stabilized by exothermic enthalpy change, the entropy change counteracting in all the three cases.  相似文献   

17.
A new type of bulk liquid membrane system, which represents the first example of a bulk liquid membrane oscillator characterised by the presence of two coupled oscillators, is described. When the benzyldimethyltetradecylammonium chloride surfactant undergoes an oscillatory mass transfer through a nitromethane liquid membrane, a new liquid layer (phase X) appears between the membrane and the acceptor phase. Kinetic analysis provides evidence that the whole system is composed of two coupled oscillators with diffusion-mediated physical coupling. The first component oscillator (based on nitromethane) of lower frequency delivers the driving material to the second one (phase X-based oscillator) leading to additional higher frequency oscillations. A new molecular mechanism is proposed for interpreting the experimental observations. The results might enhance understanding of intercellular communication in biology, where periodic signalling is more efficient than any other type of signalling mode.  相似文献   

18.
Ion transport from one aqueous phase (W1) to another (W2) across a planar bilayer lipid membrane (BLM) in the presence of inhalation anesthetics was electrochemically investigated. In the absence of inhalation anesthetics in the BLM system, no ion transport current flowed between W1 and W2 across the BLM. When inhalation anesthetics such as halothane, chloroform, diethyl ether and trichloroethylene were added to the two aqueous phases or the BLM, the ion transport current quite clearly appeared. When the ratio of the concentration of KCl or NaCl in W1 to that in W2 was varied, the zero current potential across the BLM was shifted. By considering the magnitude of the potential shift, we concluded that the ion transport current can be predominantly ascribed to the transport of Cl(-) across the BLM. Since the dielectric constants of these anesthetics are larger than that of the inner hydrophobic domain of the BLM, the concentration of hydrophilic electrolyte ions in the BLM increases with the increase in the dielectric constant of the inner hydrophobic domain caused by addition of these anesthetics. These situations lead to an increase in the ion permeability coefficient.  相似文献   

19.
<正>The selective bulk liquid membrane and polymer membrane transports of Ag(Ⅰ) from an aqueous solution containing seven metal cations,Co(Ⅱ),Ni(Ⅱ),Cu(Ⅱ),Zn(Ⅱ),Ag(Ⅰ),Cd(Ⅱ) and Pb(Ⅱ),was studied.The source phases contained equimolar concentrations of the above-mentioned cations,with the source and receiving phases being buffered at pH 5.0 and 3.0,respectively. Ag(Ⅰ) ion transport occurred with a good efficiency from the aqueous source phases across the bulk liquid membrane and polymer membrane(derived from cellulose triacetate) containing ligand 1 as the ionophores,into the aqueous receiving phases.Clear transport selectivity for Ag(Ⅰ) was observed using ligand 1.There was no selectivity for the cations using ligand 2 in the both bulk liquid membrane and polymer membrane transports.  相似文献   

20.
The rate of ion transfer across the supported liquid membrane (SLM) is studied in the rotating diffusion cell (RDC), varying the chemical composition of the SLM from net-cloth supported gel membranes to radiation-grafted polymer membranes. Steady-state current–voltage curves are measured as a function of the rotation rate, and values for the standard rate constant, k0, are determined for a series of tetraalkylammonium cations from the analysis of the initial slopes and the diffusion limiting currents. The analysis gives values for k0 of the order of 10−2–10−4 cm s−1, which is in rather good agreement with the values found in the literature for this type of the system. As controlled delivery of ionic drugs can be achieved by control of the electric current, whereby the SLM acts as a drug reservoir, the study is extended to the release of the anti-Alzheimer drug Tacrine, where ion-exchange fibers are embedded in the membrane as the drug carrier. Our previous transient experiments are also discussed, and it is suggested that their interpretation is seriously hampered by the non-uniform potential distribution, which brings about high capacitive currents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号