首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为强化微通道换热器换热效果,建立了三维双层微通道换热器模型,通过优化分析计算得出微通道最佳设计尺寸。在底部热流密度qw=100W·cm-2时,最优占空比K=74%,下层通道高度Hc1=0.5mm,上层通道高度Hc2=0.9mm,其最高温度分布于受热面中部,最大温差比未经优化时降低20.37%。并对比了凹槽微通道与普通微通道的换热特性,结果表明,在入口速度大于3m/s时,凹槽微通道换热效果比普通微通道换热效果好。  相似文献   

2.
3.
对内置有相同截面面积的圆形、椭圆形和水滴形五种不同形状扰流柱叉排阵列的矩形通道流动换热过程进行了三维数值模拟和试验,获得了通道恒热流壁面热场的分布特征,分析了扰流柱形状和来流Re数对换热特性的影响.研究结果表明:在相同的扰流柱间距下,装有圆形扰流柱阵列的矩形通道壁面Nusselt数约比水滴形扰流柱的高25%~45%;综合考虑换热和流动损失,装有水滴形扰流柱群矩形通道的综合性能最佳.  相似文献   

4.
采用实验方法对制冷剂R134a在内径为1.98mm的水平光滑铜管内的流动沸腾换热特性进行研究。试验中,质量流速范围720~900kg/(m~2·s),热流密度范围19~28k W/m~2,系统压力0.7MPa和0.81MPa(饱和温度为26.8℃、31.4℃)和干度范围0~0.65。结果表明:质量流速对换热系数的影响较大,随着质量流速的增大而增大;在低干度区,热流密度对换热系数的影响较大,换热系数随干度的增加近似成单调增加;系统压力对换热系数也有明显的影响;将试验结果与Sun-Mishima公式和Liu-Winterton公式进行比较,发现试验结果与Sun-Mishima公式计算值吻合度较高,最大误差为14.1%。  相似文献   

5.
弯曲微小通道流阻特性的数值模拟   总被引:2,自引:0,他引:2  
用经典的N-S方程对流体在矩形截面、弯曲的微小通道中的流动特性进行了数值研究,发现计算结果与试验结 果存在较大的差异。在对流体流动特性分析的基础上引入了粗糙粘度模型来对经典的N-S方程进行修正,计算结果表明 用粗糙粘度模型计算的结果与试验值吻合较好。  相似文献   

6.
微通道换热研究进展综述   总被引:1,自引:0,他引:1  
微通道换热器由于其较强的换热性能,较小的体积等诸多优势,而日益受到人们的关注。针对微通道换热性能的研究也越来越多。文中针对微通道换热研究中的沸腾换热,纳米颗粒,通道结构和临界热流密度研究近况进行了综述。  相似文献   

7.
螺旋扭曲椭圆管层流换热与流阻特性模拟分析   总被引:12,自引:0,他引:12  
对螺旋扭曲椭圆管内的层流换热与流阻特性进行了理论分析和数值计算,给出了努谢尔数和阻力系数的准则关系式。表明螺旋扭曲椭圆管可较大程度地强化层流换热,其流阻增加较小,同功耗下的强化传热评判指标可达2~4。将螺旋扭曲椭圆管换热器应用于炼油装置中,节能效益显著。  相似文献   

8.
以工程上常用的66%的乙二醇水溶液作为工质,对几何特性相似而高宽比不同的4种纯铝矩形微通道内的流动特性进行了实验研究,得到了微通道冷板基础性的设计数据。实验测量了Reynolds数在50~500之间的流动阻力系数。实验结果表明:通道高度H与宽度W之比对微通道流阻特性有显著的影响;当Re数小于100时,在实验误差内,流动阻力系数的值近似等于经典理论计算值;随着Re数的增大和高宽比的变化,f的值远大于理论值,这可能是由微通道内部壁面粗糙度效应所导致的。  相似文献   

9.
本文通过MEMS技术设计并加工出一种间断型波纹微通道。采用丙酮为工质,借助高速同步测量系统对间断型波纹微通道内的流动沸腾换热特性进行了实验研究。通过与传统的矩形直通道对比,分析了两种微通道的流型、换热系数和底面温度分布。实验结果表明:间断型波纹微通道的出口处能维持稳定的环状流,有效推迟了局部干涸。由于特殊的壁面结构能提升沸腾换热性能,所以间断型波纹微通道的换热系数要高于矩形直通道,增幅接近70%。相同工况下,间断型波纹微通道底面温差更小,提供了更好的温度分布均匀性。  相似文献   

10.
11.
本文在8根水力直径均为186ìm的硅微平行通道的入口端加工了限制装置,抑制了通道间的相互作用,得到了稳定的气液两相流动,并借助于可视化技术,揭示了通道内部不同区段典型的流型特点.分析了经过通道的压降和局部换热系数的变化规律,并用经验关系式和试验结果进行了比较.  相似文献   

12.
选用R134a、R123、水三种不同的介质,分别对不同流速和不同通道尺寸下微小通道冷板的流动沸腾换热进行数值模拟研究,分析了介质、流速及通道尺寸对换热器流动沸腾换热性能的影响。研究发现:微小通道冷板的通道宽度为1mm时,采用8mm的通道肋高和低流速的R134a介质,既能控制加热表面温升,又能有效地将利用介质的沸腾换热和流动换热。  相似文献   

13.
本文研究了流最为50.1~880.5 kgm-2s-1,干度为0.01~0.25范围内微通道热沉内液氮流动沸腾的换热特性.热沉基材为一块长宽厚为50 min×30 mm×4 mm的不锈钢板,钢板上加工有宽1.0 mm,深2.0 mm的9个通道.实验结果表明在定热流密度条件下,热沉表面温度分布很不均匀,这主要是由微通道内...  相似文献   

14.
压力边界条件下微通道内气体流动换热特性研究   总被引:5,自引:0,他引:5  
本文用直接模拟蒙特卡罗方法对给定进出口压力边界条件下微通道内气体的流动换热特性进行了数值模拟,给 出了壁面与流体的温差对气体沿程压力、温度及数密度分布的影响。计算结果表明,当壁温高于流体温度时,温差仅出现 在通道进出口处,但其发生机理却不同;流体可压缩性与稀薄性均得到增强,沿程压力分布更加非线性。  相似文献   

15.
通过对金属辐射冷板传热数学模型的简化,得出影响辐射冷板换热性能的五个重要参数(冷水供回水平均温度、水流速度、管径、板厚、管间距)的数学描述。其次通过编写MATLAB遗传算法的金属辐射冷板目标函数优化代码,经遗传迭代求出辐射冷板换热性能目标函数的最值,及其对应的最优解组合。通过分析可知遗传算法能够有效的搜索到目标函数最优解,由于数学问题的提出是基于金属辐射冷板的基本原理,因此该算法具有一定的推广性,可用于多种形式的辐射冷板设计,能够有效、方便的提高辐射冷板的换热性能。  相似文献   

16.
交叉缩放椭圆管换热与流阻实验研究及分析   总被引:7,自引:0,他引:7  
对交叉缩放椭圆管进行了实验和数值研究,给出了换热和沿程阻力系数实验拟合关联式。交叉缩放椭圆管管内 截面交叉变化诱导产生强烈的二次流和纵向涡流,改善了速度场与温度场之间的协同关系。实验和数值模拟结果表明,交 叉缩放椭圆管管内的流动在Re≥500即表现为湍流,换热强化效果显著。  相似文献   

17.
本文提出了微圆管内环状流凝结换热的分析模型,考虑了重力、汽液界面剪切力、表面张力以及界面凝结热阻的作用。文中主要研究凝结换热过程中重力、入口蒸汽Re数及外壁面温度的影响。模拟的结果表明,重力对微圆管流动凝结换热的影响非常小,可被忽略;凝结液的排除主要依赖于汽液界面的剪切应力作用,使Nu随蒸汽进口Re数的增加而明显增大;冷却外壁面的温度对凝结换热也具有一定的影响, Nu将随外壁面温度的降低而增大。  相似文献   

18.
《工程热物理学报》2021,42(7):1844-1850
基于显微粒子成像测速(Micro-PIV)技术,对微通道内单柱绕流特性展开实验研究,分析了 10Re350范围内不同高度流层的速度场、涡量场及旋涡特性。结果表明:微尺度绕流现象相比宏观尺度存在滞后,首次出现旋涡的第一临界Re约为10。随着Re的增大,尾流区长度不断增加,旋涡尺度逐渐增大,旋涡中心位置向下游延伸。涡量强度随Re的增加而提高,涡量向下游扩散能力增强,高涡量区变窄。不同高度流层的速度场与涡量场存在差别,体现出三维效应。  相似文献   

19.
一、前言 为使换热设备更加轻小高效,各国学者着力研究了强化传热技术。近年研制出的不少高效传热表面已在空冷、海水淡化、化工、宇航、船舶、动力工程等方面得到应用。 强化管内对流换热的主要手段是促进管内湍流和扩展管内换热面积。R.L.Webb  相似文献   

20.
本文对TiO_2-水,Cu水和SiO_2-水3种纳米流体在一种多孔小通道平行流扁管中的单相流动换热特性进行了实验研究。该扁管矩形通道水力直径1.67 mm,整个实验过程Re变化范围97~6200。实验结果表明:纳米流体起到强化换热效果的同时,也伴随着阻力的增加。此外,纳米流体相对于基液,出现了转捩提前现象。Nu随体积浓度的增加,先增加后减小,使得每种纳米流体都存在一个最优浓度。0.01%的TiO_2-水纳米流体在Re=6200时,Nu增长最大,达到43%。最后,利用性能评价标准对纳米流体的适用性进行了综合评定,0.01%的TiO_2-水纳米流体具有最佳性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号