首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 328 毫秒
1.
为探究热泵供水温度对CO2空气源热泵系统性能的影响,保持室外环境温度15.5℃不变,调节热泵供水温度,测试冷却水流量、气冷器出水温度、压缩机排气温度、气冷器CO2进出口温差、压缩机排气压力、压缩机耗功量、系统制热量、气冷器热交换完善度、系统COP的变化情况。结果表明:供水温度由45℃升至85℃,气冷器出水温度、压缩机排气温度、气冷器CO2进出口温差、压缩机排气压力随之增加,冷却水流量随之减小。系统制热量增加了7.3%、气冷器热交换完善度下降了20.0%、系统COP下降了35%、压缩机功耗增加了65.1%。  相似文献   

2.
提出了空调冷柜双联机组实验系统,该系统是将制冷剂为R410A的空调系统的部分制冷剂节流进入中间过冷器,用于制冷剂为R404A的冷柜系统过冷。在不同冷柜温度和室外环境温度下,通过实验研究了中冷器蒸发温度对空调冷柜双联机组性能的影响。结果表明:随着蒸发温度的升高,空调系统的COP逐渐降低,而冷柜系统存在最佳的蒸发温度,此时COP最大。  相似文献   

3.
针对一套已有的小型CO2冷柜系统,对气冷器进行了优化设计,为了研究优化设计的效果,在相同工作条件下,对两套系统的运行参数进行了对比,讨论了优化设计前后,系统的运行功率、COP、压缩机的吸、排气压力及吸、排气温度。结果表明:优化设计后,系统COP增大到原来的1.44倍;运行功率降低了25W左右;压缩机排气压力降低了0.7MPa左右;压缩机吸气温度降低了5℃左右。对气冷器的优化设计,可以使其与系统更加匹配,制冷效果更好、更加节能;同时,也提高了系统的安全性。  相似文献   

4.
建立了跨临界CO_2双级压缩增压系统的热力学模型,并对气体冷却器出口温度、膨胀罐内压力、过冷度等影响系统性能的因素进行了数值分析。结果表明:系统的最佳排气压力随着气冷器出口温度的升高而迅速升高,且在气冷器出口温度不发生改变的情况下,最佳排气压力随着蒸发温度的降低略微有所升高,而系统最佳COP随气冷器出口温度的升高而快速下降。系统的最佳干度值随着气冷器出口温度的升高而增大。在一定的蒸发温度下,系统COP随着膨胀罐内压力的增大而逐渐减小,同时随着过冷度的增大系统COP逐渐增大,但要比蒸发温度对系统性能的影响要小些。  相似文献   

5.
跨临界热泵循环在大温差加热时具有显著优势。为了寻求更高效的跨临界热泵循环,对R23跨临界热泵循环进行了理论分析,计算了压缩机排气压力对系统性能的影响。计算结果表明,R23热泵系统存在最优高压侧压力,最优高压侧压力与制冷剂气冷器出口温度、蒸发温度、过热度都有关系,其中以制冷剂气冷器出口温度对最优高压侧压力影响最大。以制冷剂气冷器出口温度为自变量,利用多项式函数对最优高压侧压力进行了拟合,拟合的最大相对误差为-3.14%,平均相对偏差为1.22%。结果可以为R23跨临界热泵系统的设计和控制提供理论参考。  相似文献   

6.
文中对R116跨临界热泵循环进行了理论分析,分别计算了压缩机最优排气压力和回热器对系统性能的影响。计算结果表明,系统存在最优排气压力,最优排气压力与制冷剂气冷器出口温度、蒸发温度以及过热度都有关系,利用多项式函数对最优排气压力进行了拟合,拟合的最大相对误差为-5.92%,平均相对偏差为1.77%;在蒸发温度-5℃、0℃、5℃,过热度5℃、10℃、15℃,气冷器出口温度25℃—70℃的情况下,分别对系统回热循环性能进行了分析计算,结果表明回热循环性能较无回热循环有大幅的改善,改善幅度介于12—95%之间。文中结果可以为R116跨临界热泵系统的设计和控制提供理论参考。  相似文献   

7.
为优化CO_2热泵热水系统的循环性能,分析了CO_2/R1270, CO_2/R290, CO_2/R32, CO_2/R41混合制冷剂的饱和蒸汽压力、临界压力、温度滑移、COP,最终筛选出符合要求的R41。针对CO_2/R41混合制冷剂的单位制冷量/制热量、压缩机的压缩比、排气温度进行进一步实验分析,结果表明:CO_2/R41(70/30)系统的COP比纯CO_2系统增加7%,在设定工况下CO_2/R41(50/50)系统单位质量制冷量增加26.1%,单位质量制热量增加18.3%。CO_2/R41混合物可有效降低跨临界循环压缩机的压缩比及排气温度。  相似文献   

8.
对带和不带回热器(IHX)的跨临界二氧化碳两相引射制冷系统进行了实验研究,主要分析了回热器、实验工况、引射器尺寸参数对系统性能的影响。结果表明:对于固定的气冷器出口温度、不同的气冷器压力工况,回热器的使用可使系统制冷量提高0.85%-8.60%,COP提高0.88%-11.7%;对于固定的气冷器压力,在不同的气冷器出口温度条件下,其制冷量可提高1.14%-2.92%,COP可提高0.99%-2.75%;在气冷器压力较低及出口温度较高的工况条件下,回热器对系统性能影响较大,系统COP及制冷量的最大改善均发生在上述工况条件下;喷嘴直径与引射器混合室长度之间存在一个最优匹配,两者的最优匹配能使系统COP大大提高。  相似文献   

9.
为进一步研究跨临界CO_2热泵的系统性能,针对所设计CO_2热泵系统进行实验。实验结果表明:在风机频率一定时,系统热负荷、压缩机轴功率、系统出风温度均随压缩机频率的增大而增大。蒸发温度从-2℃升至4℃,COP增幅为26%,CO_2在气冷器出口温度降低10℃左右时,系统COP增幅大于30%。实验工况下跨临界CO_2热泵系统出风温度变化范围在50℃-100℃,在获得大于75℃出风温度时,热力学第二定律效率超过30%,CO_2气冷器出口温度、高压侧压力、蒸发温度的升高都会提高系统热力学第二定律效率。  相似文献   

10.
建立了R404A单级带经济器制冷系统及R404A双级压缩中冷带负荷制冷系统的热力学模型,研究蒸发温度和冷凝温度的变化对系统的排气温度、制冷剂流量及系统COP的影响。结果表明:在相同工况下,双级压缩系统的排气温度低于带经济器的单级系统,制冷剂流量和COP均高于带经济器的单级系统。在冷凝温度为35℃,冻结物冷藏间蒸发温度为-30℃,冷却物冷藏间蒸发温度为-7℃的设定温度下,双级系统的制冷系数为3. 72,比带经济器的单级系统高12. 28%,比基本单级制冷系统高17. 23%。双级系统运行更为安全可靠,受冷凝温度的影响更小。  相似文献   

11.
环保工质CO_2作为制冷剂用于空调领域再次受到广泛关注。文中对CO_2跨临界循环进行了热力学理论分析,分析结果表明:循环系统存在最优高压压力,使得其COP达到最大值;蒸发温度的升高或者冷却压力的降低都能提高COP,但都会降低效率;实际运行系统中,应该尽可能提高蒸发温度或者降低气体冷却器的出口温度。  相似文献   

12.
对引射器内部简化热力学模型进行了改进,建立了CO2两相流制冷系统的数学模型。利用MATLAB语言编写程序对该系统性能进行了模拟计算,分析了工况参数及引射比对引射循环系统性能的影响。模拟结果表明:CO2两相流引射循环制冷系统在较低的引射比条件下,就可以实现稳定运行,系统COP对气冷器出口温度的变化比较敏感,同时存在最优高压侧压力使系统COP达到最大;对于不同工况条件,CO2两相流引射循环制冷系统的COP比同工况条件下的传统系统的COP,理论上分别提高了11%~18%。  相似文献   

13.
一种HCFC-22新型替代制冷剂的实验研究   总被引:8,自引:0,他引:8  
本文提出采用三元混合工质HFC—161/HFC-125/HFC-32作为HCFC-22替代制冷剂。在空气-水热泵实验台上对该工质及HCFC-22、 R407C进行对比实验,结果表明,在不改动任何系统部件的前提下,该新型制冷剂的COP值大于HCFC-22主要替代制冷剂R407C,在较高的进风温度或较低的进水温度下, COP值接近甚至大于HCFC-22。此外,该三元混合物还具有GWP值小、排气温度低、温度滑移小的优点,是HCFC-22一种有前途的替代物。  相似文献   

14.
本文提出了一种供热温度为80~100℃的新型空气源高温热泵循环(EIHP),该循环采用非共沸混合工质R290/R600a,利用内部自复叠技术和喷射器提升循环性能。针对EIHP循环建立了相应的热力学计算模型,并与传统热泵循环(CHP)进行了对比研究。根据计算结果,当冷凝器出口温度为100℃,蒸发器出口温度从25℃下降到-10℃时,相较于CHP循环,EIHP循环的COP提高了15%~27%,压缩机压比降低了20%~46%,容积制热量提高了22%~51%。此外,本文还研究了冷凝器出口温度,工质配比等参数对循环性能的影响情况。  相似文献   

15.
二氧化碳跨临界循环应用于热泵热水器具有供水温度高、能效高的优点,而最优高压控制是保证其高能效的关键之一.为了避免实际系统最优高压控制的复杂性,提出通过系统设计实现最优充注量近似不变的充注量不动点优化方法,可避免最优高压控制,在保证系统高能效运行的同时极大地简化了系统控制.仿真计算表明,通过调节换热器大小并在气体冷却器出...  相似文献   

16.
以单元式空调的IPLV测试工况为依据,进行某船用空调系统R404A和R407C替代R22的性能测试,得出了吸、排气压力,排气温度,制冷量,功耗及COP随冷凝器进水温度的变化规律。  相似文献   

17.
应用不同混合工质的自复叠制冷机组性能的理论分析   总被引:1,自引:1,他引:0  
混合工质的不同直接影响到自复叠制冷机组的各项性能。在给定的工况下分析了R744/R600 a、R744/R290、R744/R134 a、R23/R134 a、R23/R22与R32/R600等混合工质的配比、蒸发器出口温度对机组的冷凝压力、制冷量、压缩机耗功和COP的影响。结果表明:R744/R600 a、R744/R290、R744/R134 a与R32/R600 a的最佳配比为35∶65,R23/R134 a的最佳配比为40∶60,R23/R22的最佳配比为30∶70,其中R744/R290系统的COP值为最大;低沸点组分增大情况下,R744/R290、R744/R134 a与R23/R22机组的制冷量和压缩机耗功随着先增加后减小,但R23/R134 a、R32/R600与R744/R600 a机组的制冷量和压缩机耗功一直增加;在最佳配比情况下,随着蒸发温度的升高,其机组的COP值不断增加,而冷凝压力几乎不变。  相似文献   

18.
冷藏柜制冷剂容量较小,系统中制冷剂充灌量的变化对制冷性能会产生很大的影响。通过改变系统中制冷剂充灌量,研究了制冷性能参数随制冷剂充灌量的变化趋势,为合理确定制冷剂充灌量提供了一定的依据。随着制冷剂充灌量的增加,蒸发压力和冷凝压力升高,蒸发器换热温差减小,过热度减小,冷凝器换热温差增大,过冷度增大;冷凝压力和蒸发压力压差增加,压比减小;压缩机平均功耗先减小后增加,制冷量则先增加后减小。  相似文献   

19.
研究了一种双元混合物——北洋2#,它具有优于R22的环保性能和良好的循环性能。在同机型标准空调工况下检测,其性能(COP)较R22低1.7%,但其制冷量较R22高14.6%;其COP较R410A和R32均高8%。在低温区的检测试验证明:其COP稍低于R22,但是其能达到比R22更低的温度。并且北洋2#的制冷速度比R22快35.9%。所以,北洋2#可以作为R22有潜力的替代制冷剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号