首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Reaction of pol(vinyl alcohol) (PVA) with superoxide anion was carried out in a dimethyl sulfoxide solution at 40°C under nitrogen and changes in the yield of recovered polymer, molecular weight, and chemical structure were examined. Appreciable decreases in the yield of recovered polymer and molecular weight were observed during the reaction, which indicated that a main chain scission of the polymer had occurred. Residual acetyl groups identified by the absorption peaks at ca. 1720 and 1250 cm?1 in infrared (IR) spectra were removed rapidly and β-diketone groups identified by the peaks at ca. 1640 and 1560 cm?1 in IR spectra and at ca. 255 nm in ultraviolet (UV) spectra were formed during the reaction. Formation of carboxylate groups was also assumed. The reaction mechanism was discussed on the basis of the results obtained.  相似文献   

2.

The reaction of 1-methyl-3-methylthio-5-phenyl-1,2,4-triazinium (MTPT) iodide with diiodine in a solution leads to monoiodide crystal structure that in excess of iodine gives the unusual tetraiodide anion with two central iodine atoms in disorder. The bonding within the anion has been characterized as I…I2…I; the existence of the bound iodine molecule inside has been proven by the characteristic band in experimental and calculated Raman spectra. Non-covalent interactions of MTPT in considered crystal structures are different. Monoiodide anion as a strong electron donor allows the formation of the S…I chalcogen bonds that are absent in tetraiodide structure. The features of halogen bonds within the I42– anion are also performed.

  相似文献   

3.

The anion exchange reaction is fundamental to the adsorption and desorption of a specific species from a solution phase to an extracting phase, and it is widely used for separation and waste fluid treatment in industrial fields. However, the details of the anion exchange reaction are poorly understood. Quantitative thermodynamic analysis needs a precise solution condition before and after the exchange reaction. Identification of species adsorbed on the anion exchanger is also necessary because there are multiple species in the solution phase in general. Cobalt is a base metal that is widely used in modern society. One of the authors determined the distribution of cobalt-chloro complexes in hydrochloric acid solutions. It is necessary to know what species are adsorbed on anion exchangers for the thermodynamic analysis of the anion exchange reaction. The comparison in structures between the species in the solution phase and adsorbed on anion exchangers reveals what species are adsorbed. Therefore, the determination of the structures of cobalt-chloro complexes in the solution phase is the next step for quantitative analysis. X-ray absorption spectroscopy (XAS) was used for the structure analysis. Factor analysis can decompose extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) spectra consisting of multiple species into individual spectra of single species using the distribution determined using UV-Vis absorption spectra. Fitting EXAFS theoretical models to the decomposed individual spectra determined the structures of three cobalt-chloro complexes: an octahedron of [CoII(H2O)6]2+, a distorted octahedron of [CoII(H2O)5Cl]+, and a tetrahedron of [CoIICl4]2?. The XANES spectra showed us that the Cl ligand in [CoII(H2O)5Cl]+ was attracted to the center atom of CoII by an electrostatic force, and the bonding system between Cl ligands and CoII in [CoIICl4]2? involved covalency.

  相似文献   

4.
A novel spectrofluorimetric method using vanillin-8-aminoquinoline (VAQ) as fluorescent probe was developed for the determination of superoxide anion radical (O2). The new fluorescent probe was characterized by elemental analysis and IR spectra. Under the optimum conditions of the determination, the linear calibration range and the detection limit of the developed method for superoxide anion radical were in the range (0.0-1.0)×10−5 and 2.0×10−8 mol l−1, respectively. The effect of interferences was studied. The proposed method was applied to determine the generation rate of superoxide anion radical in the course of aging in red sage successfully.  相似文献   

5.
The mechanism of the redox reaction of ebselen with superoxide was investigated using both ESR and electrochemical techniques. The reaction with superoxide in aprotic solvents was followed by means of cyclic voltammetry and ESR spin-trapping. A decrease in the oxidation current due to superoxide as a result of the addition of ebselen was clearly observed in the cyclic voltammograms. Ebselen reduced the ESR signal intensity of 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-superoxide in a dose-dependent manner. The formation of an amidyl radical in this redox reaction was confirmed by rapid mixing continuous-flow ESR. The selenonate form and the seleninate form of ebselen were identified as the final products of the reaction of ebselen with superoxide. The following mechanism for this redox reaction can be proposed: First, ebselen reacts with superoxide and is converted to an ebselen anion radical; second, the ebselen anion radical reacts with superoxide and is converted to the amidyl radical. Hydrogen abstraction by the amidyl radical occurs and gives both a seleninate form and a selenonate form.  相似文献   

6.
Compounds of the three large cations tetramethylammonium, tetramethylphosphonium, and tetramethylarsonium with the superoxide radical anion were synthesized by either metathesis or ion exchange in liquid ammonia. They were obtained from concentrated solutions as ammoniates in the form of long needle‐shaped single crystals. [N(CH3)4]‐(O2)?3NH3 crystallizes in the monoclinic crystal system, whereas the two compounds [E(CH3)4](O2)?2NH3 (E=P, As) are isostructural and belong to the orthorhombic crystal system. The cation–anion packing in all three crystal structures is related to the sodium chloride structure. All structures contain hydrogen bonds between the ammonia molecules and between ammonia and the superoxide. The solvent of crystallization was easily released from the crystals upon complete removal of the solvent from the reaction vessel, leading to polycrystalline samples. The Raman spectra of all three solvent‐free compounds show the symmetric stretching mode of the superoxide ion at about 1123 cm?1. The desolvated [N(CH3)4](O2) was investigated by powder X‐ray diffraction, and the crystal structure was solved by ab initio simulated annealing methods by using rigid‐body models of the constituent molecular ions. The superoxide ion shows rotational disorder. The magnetic susceptibility of tetramethylammonium superoxide follows the Curie–Weiss law with a high‐temperature effective magnetic moment of 1.66(3) μB and a paramagnetic Curie temperature of Θ=?13(6) K. Complementary electron paramagnetic resonance spectroscopy revealed that the average g factor is temperature‐dependent. It decreased from 2.15 at 10 K to 1.66 at 100 K, possibly due to the onset of rotational motion of the superoxide ion and in accordance with the lower‐than‐expected effective magnetic moment.  相似文献   

7.
Abstract

The reaction kinetics of eight amino-carboxylate complexes of Fe(III) and Mn(II) with carbonate radical anion were studied using the pulse radiolysis method and UV-vis spectroscopy. Difference spectra revealed the formation of Fe(IV) and Mn(III) after reaction with CO3??. Spectral measurements revealed the first step to be the coordination of carbonate to the metal center. All of these led to the conclusion that the role of coordinated carbonate is essential to the electron transfer process by carbonate radical anion.  相似文献   

8.
Thanks to the superior redox potential of platinum(II) complex compared with that of Ru(bpy)32+ in the excited state, an efficient and selective visible‐light‐induced CDC reaction has been developed by using a catalytic amount (0.25 %) of 1 . With the aid of FeSO4 (2 equiv), the corresponding amide could not be detected under visible‐light irradiation (λ=450 nm), but the desired cross‐coupling product was exclusively obtained under ambient air conditions. A spectroscopic study and product analysis revealed that the CDC reaction is initiated by photoinduced electron‐transfer from N‐phenyltetrahydroisoquinoline to the complex. An EPR (electron paramagnetic resonance) experiment provides direct evidence on the generation of superoxide radical anion (O2? . ) rather than singlet oxygen (1O2) under irradiation of the reaction system, in contrast to that reported in the literature. Combined, the photoinduced electron‐transfer and subsequent formation of superoxide radical anion (O2? . ) results in a clean and facile transformation.  相似文献   

9.
The disproportionation of superoxide radical anions catalyzed by copper‐zinc superoxide dismutase was investigated in detail using density functional theory. The structures of each stationary point and the transition states were located so that the reaction pathways were determined. The results indicate that the reactions proceed by two steps both for the oxidized process of superoxide radical anion and the reduced one. The rate for the determining step of the reaction (2) is in very good agreement with the experimental value. The solvation effect on the reaction was also discussed. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

10.
The solid state structures of three nitroformate (NF) salts were determined using single crystal X‐ray crystallography. The NF anion was found to be a non‐planar moiety which adopts either the commonly observed C2v conformation or distorted propeller conformation (D3) in the case of the silver salts, or, a C2 conformation in the case of the potassium salt. This latter C2 conformation has been uniquely observed for potassium nitroformate. All structures exhibit cation‐anion interactions that influence the structure of the anion. The 13C and 14N NMR spectra of the NF anion show broad singlets, which indicates the equivalence of the nitro groups in solution within the NMR time‐scale. In addition, the vibrational and mass spectra of potassium nitroformate and silver nitroformate monohydrate were recorded. Furthermore, the gaseous decomposition products of potassium nitroformate at 25 °C were detected using IR spectroscopy and mass spectrometry.  相似文献   

11.
The activation parameters of the reactions between a superoxide anion (O2·−) and alkyl bromides are measured. An ab initio study of the transition states for various mechanisms of this reaction is performed. The mechanism of radical separation in a polar solvent becomes competitive upon an increase in the number of alkyl groups in an alkyl bromide molecule and depends on their arrangement relative to a reaction center.  相似文献   

12.
Laser desorption/ionisation and laser ablation of solid selenium trioxide, as well as the gas-phase behaviour of selenium trioxide, were studied. Selenium trioxide undergoes photochemical decomposition and, from the mass spectra obtained by laser desorption/ionisation time-of-flight mass spectrometry (LDI-TOF-MS), the following species were identified: O-, O2-, O3-, SeO-, SeO2-, SeO3-, SeO4-, Se2O7-, Se3O11-, and Se4O14-. Formation of the selenium superoxide SeO4- anion is described in this work for the first time. In addition, low-abundance selenium species such as Se2O8H2-, Se3O11H-, and Se4O15H2- were also detected. The stoichiometry of all ions was confirmed via isotopic pattern modeling and/or post-source decay (PSD) analysis. Photolysis of selenium trioxide leads partly to ozone formation. It was found that the most likely mechanisms of selenium superoxide formation are oxidation of selenium trioxide with ozone and/or reactive oxygen radicals, or photolysis of selenium trioxide tetramer (SeO3)4. Therefore, ab initio calculations were performed to support the mass spectrometric evidence and to suggest probable geometries for selenium superoxide anion SeO4- and diselenium superoxide anion Se2O7-, as well as to provide insight into and/or predict possible formation pathways. It has been found that both cyclic and non-cyclic peroxide structures of SeO4- and Se2O7- ions are possible. In addition, the SeO4 structure was also calculated guided by thermodynamic considerations using Gaussian-2 methodology, and the inferred stability of the SeO4 neutral molecule was supported by ab initio calculations.  相似文献   

13.
The reaction of the nitrone spin trap 5,5‐dimethylpyrroline‐N‐oxide (DMPO) with sodium (bi)sulfite in aqueous solutions was investigated using NMR and EPR techniques. Reversible nucleophilic addition of (bi)sulfite anions to the double bond of DMPO was observed, resulting in the formation of the hydroxylamine derivative 1‐hydroxy‐5,5‐dimethylpyrrolidine‐2‐sulfonic acid, with characteristic 1H and 13C NMR spectra. The reaction mechanism was suggested and corresponding equilibrium constants determined. The mild oxidation of the hydroxylamine results in the formation of an EPR‐detected spectrum identical with that for the DMPO adduct with sulfur trioxide anion radical. The latter demonstrates that a non‐radical addition reaction of (bi)sulfite with DMPO may contribute to the EPR detection of SO3?? radical. This possibility must be taken into account in spin trapping analysis of sulfite radical. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
Two chiral fluorescence receptors (1, 2) were synthesized, and their structures were characterized by IR, ^1H NMR, ^13C NMR, mass spectra and elemental analysis. The chiral recognition of receptors was studied by ^1H NMR and fluorescence spectra. The results demonstrate that receptors and dibenzoyl tartrate anion formed a 1 : 1 complex. The receptor 1 exhibited a good enantioselective recognition ability toward the enantiomers of dibenzoyl tartrate anion.  相似文献   

15.
Gas phase reactions of the substituted phenide ions with methyl formate have been studied. It was found that the results of these reactions depend mainly on the basicity of the phenide ion, which is related to the presence of the electron‐accepting or electron‐donating substituents in the benzene ring. It was shown that the phenide ions substituted with electron‐withdrawing groups react with methyl formate in the gas phase in a two‐step reaction. The first step that proceeds according to the typical addition–elimination mechanism results in the formation of the anion of the respective benzaldehyde derivative with the negative charge located either in the aldehyde group (acyl anion) or in the benzene ring (phenide anion) in position ortho to an aldehyde moiety. In the second step, the preliminary‐formed anion reacts with the second molecule of methyl formate yielding formally product of the second addition–elimination reaction. Theoretical calculations as well as collision induced dissociation spectra of the model compounds suggest that this reaction proceeds according to the Tishchenko reaction mechanism yielding the respective phthalide anion. According to our knowledge, this is the first example of the Tishchenko‐type reaction in the gas phase. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A novel flow-injection chemiluminescence-based method has been developed for determination of superoxide dismutase (SOD) activity. An in-vitro superoxide anion generation xanthine/xanthine oxidase stable source was established on line with FIA/CL-detection apparatus, for measuring SOD activity. This method can detect SOD in the linear range of 0.002–2.00 U mL–1 with a detection limit of 0.001 U mL–1. Another method for detection of superoxide anion is based on the luminol–FeCl3 chemiluminescence (CL) reaction. This method was used to evaluate superoxide release and SOD activity in rats treated with the traditional Chinese herb Pulsatilla chinensis, which resulted in high clearance of hepatitis B virus (HBV) after treatment of a hepatitis B patient. Interestingly, we found that treatment with Pulsatilla chinensis can specifically increase superoxide release by liver tissues and, at the same time, slightly increase extracellular SOD (ECSOD) activity in plasma; in particular it can markedly increase MnSOD activity in mitochondria in liver tissue. This work revealed a possible mechanism whereby Pulsatilla chinensis prevents possible infection (for example HBV) by specifically increasing superoxide release in the liver and increasing MnSOD activity to minimize superoxide-mediated toxicity.  相似文献   

17.
Cu(II)-salicylate was synthesized and characterized by X-ray diffraction. The reaction mechanism of the Cu(II) complex with superoxide anion was studied by ESR spectroscopy, and its (superoxide dismutase) SOD-like activity was determined by a modified illumination method in phosphate buffer (pH = 7.8), micelle solutions and lamellar liquid crystals formed from surfactants CTAB and TX-100. X-ray diffraction indicated that the Cu(II) complex had a formula Cu2(Hsal)4EtOHH2O and a similar structure to the SOD active site. EPR spectra proved that the reaction mechanism of the Cu(II) complex catalyzing O 2 .- dismutation was the same as that of the proposed dismutation reaction catalyzed by SOD. Results obtained by the NBT method indicated that the Cu(II)-complex showed SOD-like activity, and the effect of microenvironment created by surfactants on its activity was same as on SOD activity. The order of the inhibition of NBT reduction by the Cu(II)-complex in different microenvironments was: in phosphate buffer (pH = 7.8) > in TX-100 micelle > in TX-100 liquid crystal, and in nonionic TX-100 organized assemblies > in cationic CTAB organized assemblies. These results were explained by the catalytic effect of micelles, and by the space restriction and high viscosity of organized assemblies of surfactants.  相似文献   

18.
Xanthine oxidase (XOD) inhibitors and superoxide anion scavengers play an important role in the treatment of gout and the inhibition of many diseases related to superoxide anion. The respective quantitation of uric acid and superoxide anion by traditional spectroscopic methods is routine in XOD inhibitors and superoxide anion scavengers screening at laboratories worldwide. In the present study, we established an ultrahigh performance liquid chromatography and triple quadrupole mass spectrometry (UHPLC–TQ-MS) method of higher accuracy and speed that combines screening of superoxide anion scavenger and XOD inhibitor in a single analysis by adding WST-1 (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium sodium salt) to the enzymatic reaction. We applied the established method to determine the XOD inhibitory activities and superoxide scavenging activities of some herbal extracts and compounds from natural products, which could be classified into six groups based on the results of the assay. Our innovative protocol is fast, accurate and robust. Moreover, it can eliminate false positive and false negative results which may occur in the traditional spectroscopic methods.  相似文献   

19.
In the present study, a novel ionic liquid including o-carborane anion was prepared. After the carbene formation of 1-ethyl-3-methylimidazolium halide ([EMIm]+[X]) by reaction with n-BuLi, the subsequent reaction with o-carborane afforded the desired ionic liquid in moderate yields. The structure of the ionic liquid was supported by 1H NMR and 11B NMR spectra.  相似文献   

20.
This review article focuses primarily on the work carried in our laboratories over the last few years using luminescent and colorimetric sensors, where the anion recognition occurs through hydrogen bonding in organic or aqueous solvents. This review begins with the story of the discovery of fluorescent photoinduced electron transfer (PET) sensors for anions using charged neutral urea or thiourea receptors where both fluorescent and NMR spectroscopic methods monitored anion recognition. This work led to the development of dual luminescent and colorimetric anion sensors based on the use of the ICT based naphthalimide chromophore, where ions such as fluoride gave rise to changes in both the fluorescence and the absorption spectra of the sensors, but at different concentrations. Here, the former changes were due to hydrogen bonding interactions, whereas the latter was due to the deprotonation of acidic protons, giving rise to the formation of the bifluoride anion (HF2). Modification of the 4-amino-l,8-naphthalimide moiety has facilitated the formation of colorimetric anion sensors that work both in organic or aqueous solutions. Such charge neutral receptor motifs have also been incorporated into organic scaffolds with norbomyl and calixarene backbones, which have enabled us to produce anion directed self-assembled structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号