首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A local (H, k)-coloring of Kn is a coloring of its edges in which each of its subgraphs isomorphic to H is colored by at most k colors. A necessary condition on H (conjectured to be sufficient) is found such that each local (H, k)-coloring is a k-coloring. Furthermore, necessary and sufficient conditions are given for each local (H, k)-coloring to be a coloring by a bounded number of colors.  相似文献   

2.
A graph is (k, d)-colorable if one can color the vertices with k colors such that no vertex is adjacent to more than d vertices of its same color. In this paper we investigate the existence of such colorings in surfaces and the complexity of coloring problems. It is shown that a toroidal graph is (3, 2)- and (5, 1)-colorable, and that a graph of genus γ is (χγ/(d + 1) + 4, d)-colorable, where χγ is the maximum chromatic number of a graph embeddable on the surface of genus γ. It is shown that the (2, k)-coloring, for k ≥ 1, and the (3, 1)-coloring problems are NP-complete even for planar graphs. In general graphs (k, d)-coloring is NP-complete for k ≥ 3, d ≥ 0. The tightness is considered. Also, generalizations to defects of several algorithms for approximate (proper) coloring are presented. © 1997 John Wiley & Sons, Inc.  相似文献   

3.
《Discrete Mathematics》2022,345(6):112849
The Grötzsch Theorem states that every triangle-free planar graph admits a proper 3-coloring. Among many of its generalizations, the one of Grünbaum and Aksenov, giving 3-colorability of planar graphs with at most three triangles, is perhaps the most known. A lot of attention was also given to extending 3-colorings of subgraphs to the whole graph. In this paper, we consider 3-colorings of planar graphs with at most one triangle. Particularly, we show that precoloring of any two non-adjacent vertices and precoloring of a face of length at most 4 can be extended to a 3-coloring of the graph. Additionally, we show that for every vertex of degree at most 3, a precoloring of its neighborhood with the same color extends to a 3-coloring of the graph. The latter result implies an affirmative answer to a conjecture on adynamic coloring. All the presented results are tight.  相似文献   

4.
In 1999, at one of his last public lectures, Tutte discussed a question he had considered since the times of the Four Color Conjecture. He asked whether the 4-coloring complex of a planar triangulation could have two components in which all colorings had the same parity. In this note we answer Tutte’s question contrary to his speculations by showing that there are triangulations of the plane whose coloring complexes have arbitrarily many even and odd components.  相似文献   

5.
It is shown that two sorts of problems belong to the NP-complete class. First, it is proven that for a given κ-colorable graph and a given κ-coloring of that graph, determining whether the graph is or is not uniquely κ-colorable is NP-complete. Second, a result by Garey, Johnson, and Stockmeyer is extended with a proof that the coloring of four-regular planar graphs is NP-complete.  相似文献   

6.
A proper vertex coloring of a plane graph is 2-facial if any two different vertices joined by a facial walk of length 2 are colored differently, and it is 2-distance if every two vertices at distance 2 from each other are colored differently. Note that any 2-facial coloring of a subcubic graph is 2-distance.It is known that every plane graph with girth at least 14 has a 2-facial 5-coloring [M. Montassier, A. Raspaud, A note on 2-facial coloring of plane graphs. Inform. Process. Lett. 98 (6) (2006) 235–241], and that every planar subcubic graph with girth at least 13 has a list 2-distance 5-coloring [F. Havet, Choosability of square of planar subcubic graphs with large girth, Discrete Math. 309 (2009) 3353–3563].We strengthen these results by proving the list 2-facial 5-colorability of plane graphs with girth at least 12.  相似文献   

7.
Xiaoyun Lu 《Discrete Mathematics》2011,311(23-24):2711-2715
A well-known conjecture of Barnette states that every 3-connected cubic bipartite planar graph has a Hamiltonian cycle, which is equivalent to the statement that every 3-connected even plane triangulation admits a 2-tree coloring, meaning that the vertices of the graph have a 2-coloring such that each color class induces a tree. In this paper we present a new approach to Barnette’s conjecture by using 2-tree coloring.A Barnette triangulation is a 3-connected even plane triangulation, and a B-graph is a smallest Barnette triangulation without a 2-tree coloring. A configuration is reducible if it cannot be a configuration of a B-graph. We prove that certain configurations are reducible. We also define extendable, non-extendable and compatible graphs; and discuss their connection with Barnette’s conjecture.  相似文献   

8.
To attack the Four Color Problem, in 1880, Tait gave a necessary and sufficient condition for plane triangulations to have a proper 4‐vertex‐coloring: a plane triangulation G has a proper 4‐vertex‐coloring if and only if the dual of G has a proper 3‐edge‐coloring. A cyclic coloring of a map G on a surface F2 is a vertex‐coloring of G such that any two vertices x and y receive different colors if x and y are incident with a common face of G. In this article, we extend the result by Tait to two directions, that is, considering maps on a nonspherical surface and cyclic 4‐colorings.  相似文献   

9.
An L-list coloring of a graph G is a proper vertex coloring in which every vertex v gets a color from a list L(v) of allowed colors. G is called k-choosable if all lists L(v) have exactly k elements and if G is L-list colorable for all possible assignments of such lists. Verifying conjectures of Erdos, Rubin and Taylor it was shown during the last years that every planar graph is 5-choosable and that there are planar graphs which are not 4-choosable. The question whether there are 3-colorable planar graphs which are not 4-choosable remained unsolved. The smallest known example far a non-4-choosable planar graph has 75 vertices and is described by Gutner. In fact, this graph is also 3 colorable and answers the above question. In addition, we give a list assignment for this graph using 5 colors only in all of the lists together such that the graph is not List-colorable. © 1997 John Wiley & Sons, Inc.  相似文献   

10.
For positive integers , a coloring of is called a -coloring if the edges of every receive at least and at most colors. Let denote the maximum number of colors in a -coloring of . Given we determine the largest such that all -colorings of have at most O(n) colors and we determine asymptotically when it is of order equal to . We give several bounds and constructions. Received May 3, 1999  相似文献   

11.
Many classes of graphs where the vertex coloring problem is polynomially solvable are known, the most prominent being the class of perfect graphs. However, the list-coloring problem is NP-complete for many subclasses of perfect graphs. In this work we explore the complexity boundary between vertex coloring and list-coloring on such subclasses of perfect graphs where the former admits polynomial-time algorithms but the latter is NP-complete. Our goal is to analyze the computational complexity of coloring problems lying “between” (from a computational complexity viewpoint) these two problems: precoloring extension, μ-coloring, and (γ,μ)-coloring. Flavia Bonomo partially supported by UBACyT Grants X606 and X069 (Argentina), and CNPq under PROSUL project Proc. 490333/2004-4 (Brazil). Guillermo Durán partially supported by FONDECyT Grant 1080286 and Millennium Science Institute “Complex Engineering Systems” (Chile), and CNPq under PROSUL project Proc. 490333/2004-4 (Brazil). Javier Marenco partially supported by UBACyT Grant X069 (Argentina), and CNPq under PROSUL project Proc. 490333/2004-4 (Brazil).  相似文献   

12.
Every graph G contains a minimum vertex-coloring with the property that at least one color class of the coloring is a maximal independent set (equivalently, a dominating set) in G. Among all such minimum vertex-colorings of the vertices of G, a coloring with the maximum number of color classes that are dominating sets in G is called a dominating-χ-coloring of G. The number of color classes that are dominating sets in a dominating-χ-coloring of G is defined to be the dominating-χ-color number of G. In this paper, we continue to investigate the dominating-χ-color number of a graph first defined and studied in [1].  相似文献   

13.
Pil?niak and Wo?niak put forward the concept of neighbor sum distinguishing (NSD) total coloring and conjectured that any graph with maximum degree Δ admits an NSD total (Δ+3)-coloring in 2015. In 2016, Qu et al. showed that the list version of the conjecture holds for any planar graph with Δ ≥ 13. In this paper, we prove that any planar graph with Δ ≥ 7 but without 6-cycles satisfies the list version of the conjecture.  相似文献   

14.
Variable space search for graph coloring   总被引:1,自引:0,他引:1  
Let G=(V,E) be a graph with vertex set V and edge set E. The k-coloring problem is to assign a color (a number chosen in {1,…,k}) to each vertex of G so that no edge has both endpoints with the same color. We propose a new local search methodology, called Variable Space Search, which we apply to the k-coloring problem. The main idea is to consider several search spaces, with various neighborhoods and objective functions, and to move from one to another when the search is blocked at a local optimum in a given search space. The k-coloring problem is thus solved by combining different formulations of the problem which are not equivalent, in the sense that some constraints are possibly relaxed in one search space and always satisfied in another. We show that the proposed algorithm improves on every local search used independently (i.e., with a unique search space), and is competitive with the currently best coloring methods, which are complex hybrid evolutionary algorithms.  相似文献   

15.
The problem of when a recursive graph has a recursive k-coloring has been extensively studied by Bean, Schmerl, Kierstead, Remmel, and others. In this paper, we study the polynomial time analogue of that problem. We develop a number of negative and positive results about colorings of polynomial time graphs. For example, we show that for any recursive graph G and for any k, there is a polynomial time graph G′ whose vertex set is {0,1}* such that there is an effective degree preserving correspondence between the set of k-colorings of G and the set of k-colorings of G′ and hence there are many examples of k-colorable polynomial time graphs with no recursive k-colorings. Moreover, even though every connected 2-colorable recursive graph is recursively 2-colorable, there are connected 2-colorable polynomial time graphs which have no primitive recursive 2-coloring. We also give some sufficient conditions which will guarantee that a polynomial time graph has a polynomial time or exponential time coloring.  相似文献   

16.
In this article the parameter matrices are enumerated of all perfect 2-colorings of the Johnson graphs J(8, 3) and J(8, 4), and several constructions are presented for perfect 2-coloring of J(2w, w) and J(2m, 3). The concept of a perfect coloring generalizes the concept of completely regular code introduced by P. Delsarte. The problem of existence of similar structures in Johnson graphs is closely related to the problem of existence of completely regular codes in Johnson graphs and, in particular, to the Delsarte conjecture on the nonexistence of nontrivial perfect codes in Johnson graphs, the problem of existence of block designs, and other well-known problems.  相似文献   

17.
A locally identifying coloring (lid-coloring) of a graph is a proper vertex-coloring such that the sets of colors appearing in the closed neighborhoods of any pair of adjacent vertices having distinct neighborhoods are distinct. Our goal is to study a relaxed locally identifying coloring (rlid-coloring) of a graph that is similar to locally identifying coloring for which the coloring is not necessarily proper. We denote by \(\chi _{rlid}(G)\) the minimum number of colors used in a relaxed locally identifying coloring of a graph G. In this paper, we prove that the problem of deciding that \(\chi _{rlid}(G)=3\) for a 2-degenerate planar graph G is NP-complete and for a bipartite graph G is polynomial. We give several bounds of \(\chi _{rlid}(G)\) for different families of graphs and construct new graphs for which these bounds are tight. We also compare this parameter with the minimum number of colors used in a locally identifying coloring of a graph G (\(\chi _{lid}(G)\)), the size of a minimum identifying code of G (\(\gamma _{id}(G)\)) and the chromatic number of G (\(\chi (G)\)).  相似文献   

18.
《Discrete Mathematics》2022,345(4):112790
DP-coloring of graphs as a generalization of list coloring was introduced by Dvo?ák and Postle (2018). In this paper, we show that every planar graph without intersecting 5-cycles is DP-4-colorable, which improves the result of Hu and Wu (2017), who proved that every planar graph without intersecting 5-cycles is 4-choosable, and the results of Kim and Ozeki (2018).  相似文献   

19.
After a brief historical account, a few simple structural theorems about plane graphs useful for coloring are stated, and two simple applications of discharging are given. Afterwards, the following types of proper colorings of plane graphs are discussed, both in their classical and choosability (list coloring) versions: simultaneous colorings of vertices, edges, and faces (in all possible combinations, including total coloring), edge-coloring, cyclic coloring (all vertices in any small face have different colors), 3-coloring, acyclic coloring (no 2-colored cycles), oriented coloring (homomorphism of directed graphs to small tournaments), a special case of circular coloring (the colors are points of a small cycle, and the colors of any two adjacent vertices must be nearly opposite on this cycle), 2-distance coloring (no 2-colored paths on three vertices), and star coloring (no 2-colored paths on four vertices). The only improper coloring discussed is injective coloring (any two vertices having a common neighbor should have distinct colors).  相似文献   

20.
Given a graph G, a total k‐coloring of G is a simultaneous coloring of the vertices and edges of G with at most k colors. If Δ(G) is the maximum degree of G, then no graph has a total Δ‐coloring, but Vizing conjectured that every graph has a total (Δ + 2)‐coloring. This Total Coloring Conjecture remains open even for planar graphs. This article proves one of the two remaining planar cases, showing that every planar (and projective) graph with Δ ≤ 7 has a total 9‐coloring by means of the discharging method. © 1999 John Wiley & Sons, Inc. J Graph Theory 31: 67–73, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号