首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
用一束波长为210.27 nm的激光将CS2分子激发至预离解态1 B2(1 Σ+u),用另一束激光通过激光诱导荧光(LIF)方法检测碎片CS,在250.5~286.5 nm获得了CS碎片A1 Π←X1 Σ+振转分辨的激发谱.通过对光谱强度的分析,获得了CS碎片v″=0~8的振动布居和v″=1,4~8振动态的转动布居.结果发现,碎片CS的振动布居呈双模结构,分别对应于CS2分子1 B2(1 Σ+u)态的两个解离通道,即CS(X1 Σ+,v″=0~9)+S(3PJ)和CS(X1 Σ+, v″=0~1)+S(1 B2).由此得到两个解离通道的分支比S(3PJ): S(1 B2)为5.6±1.2.与前人193 nm处的研究结果相比, 210.27 nm激发更有利于S(3PJ)通道的生成.此外,实验还发现CS的转动布居不满足热平衡分布,为两个Boltzmann分布的合成.  相似文献   

4.
A rhodium complex catalyzes two types of single bond metathesis reactions of two CS bonds depending on the added ligand: CS/CS to CS/CS metathesis and CS/CS to CC/SS metathesis. In the presence of a catalytic amount of RhH(PPh3)4 and 1,1′-bis(diphenylphosphino)ferrocene (dppf), two 1-alkylthioalkynes exchange alkylthio groups to give equilibrium mixtures of four 1-alkylthioalkynes. When tris(p-methoxyphenyl)phosphine or diphenylmethylphosphine is used, 1,3-butadiynes are obtained.  相似文献   

5.
6.
The aim of this study was to determine the best neutral ML3 metal complexes for activating and cleaving the multiple bonds in CS2 and CS. Current experimental results show that, so far, only one bond in CS2 can be cleaved, and that CS can be activated but the bond is not broken. In the work described in this paper, density functional theory calculations have been used to evaluate the effectiveness of different ML3 complexes to activate the C-S bonds in CS2 and CS, with M = Mo, Re, W, and Ta and L = NH2. These calculations show that the combination of Re and Ta in the L3Re/CS2/TaL3 complex would be the most promising system for the cleavage of both C-S bonds of CS2. The reaction to cleave both C-S bonds is predicted to be exothermic by about 700 kJ mol(-1) and to proceed in an almost barrierless fashion. In addition, we are able to rationalize why the breaking of the C-S bond in CS has not been observed experimentally with M = Mo: this reaction is strongly endothermic. There is a subtle interplay between charge transfer and pi back-donation, and it appears that the Mo-C and Mo-S bonds are not strong enough to compensate for the breaking of the C-S bond. Our results suggest that, instead, CS could be cleaved with ReL3 or, even better, with a combination of ReL3 and TaL3. Molecular orbitals and Mulliken charges have been used to help explain these trends and to make predictions about the most promising systems for future experimental exploration.  相似文献   

7.
The dependence of CS2 predissociation upon rotational quantum number K at vibrational levels below the barrier to linearity of the 1B2(1Sigmau+) state has been investigated in detail with laser spectroscopy, by using a heated supersonic source to increase the intensities of hot band transitions. Predissociation lifetimes were determined from rotational contour simulations of 13 vibronic bands in the CS photofragment excitation (PHOFEX) spectrum, each terminating at the same upper vibrational level but via transitions with different K number (K = 0, 1, 2, respectively). The rovibrational populations of CS fragment at these excitation bands were derived from the laser-induced fluorescence (LIF) spectrum, and were used further to obtain the dissociation branching ratios S(1D)/S(3P) as well as the excess energy partitionings after dissociation. The lifetimes and the branching ratios were found to be sensitively dependent on quantum number K; the lifetime decreases with the increase of K, and the branching ratio increases with K. Analysis shows that quantum number K influences the S(1D) channel more effectively than the S(3P) channel. About 28 and 15% of the total available energy is taken up by the CS vibrational and rotational degrees of freedom, respectively. Systematic analysis indicates that the two electronic states interacting with 1B2(1Sigmau+) state should be bent, and the state correlating with S(1D) channel should be more bent.  相似文献   

8.
Summary White crystalline complexes of general formula Cu2L4X2 (where X = Cl, Br and L = 1, 3-oxazolidine-2-thione, pyrrolidine-2-thione,N-methyl-1,3-imidazolidine-2-thione andN-ethyl-1,3-imidazolidine-2-thione) and CuLX (where L = 1,3-imidazolidine-2-thione) were prepared by reduction of copper(II) halides and studied by i.r. spectroscopy in the 4000–200 cm range. Evidence for ligand coordination to the metal through sulphur was found in each case. The(CuCI) vibration in all the chloro derivatives falls atca. 240 cm.  相似文献   

9.
10.
We examine the temperature dependence of the electron spin relaxation times of the molecules N@C60 and N@C70 (which comprise atomic nitrogen trapped within a carbon cage) in liquid CS2 solution. The results are inconsistent with the fluctuating zero-field splitting (ZFS) mechanism, which is commonly invoked to explain electron spin relaxation for S> or =1 spins in liquid solution, and is the mechanism postulated in the literature for these systems. Instead, we find an Arrhenius temperature dependence for N@C60 , indicating the spin relaxation is driven primarily by an Orbach process. For the asymmetric N@C70 molecule, which has a permanent ZFS, we resolve an additional relaxation mechanism caused by the rapid reorientation of its ZFS. We also report the longest coherence time (T2) ever observed for a molecular electron spin, being 0.25 ms at 170 K.  相似文献   

11.
The dynamics on the multi-photon dissociation of CS2+ molecular ions to produce CS + ions has been investigated by measuring the CS + photofragment excitation(PHOFEX)spectrum in the wavelength range of 385~435 nm,where the CS2+ molecular ions were prepared purely by[3+1]multiphoton ionization of the neutral CS2molecules at 483.2 nm. With the ~60 ns delay,which is much more than the laser pulse width(~5 ns),between ionization laser and dissociation laser,the threshold wavelength of dissociation laser to produce CS+ fragment ion from CS2+ molecular ions was obviously observed in the PHOFEX spectrum. The adiabatic appearance potential of the CS+ was determined to be(5.852 ± 0.005)eV above the X 2Σg,3/2(0,0,0)level of CS2+. The product branching ratios,(CS+/S+),as measured from the PHOFEX spectra,increase from 0 to slightly larger than 1 in the wavenumber range of 47200~50400 cm-1 . The[1+1]dissociation mechanism to get to CS++S from CS2+ was discussed and preliminarily attributed to(i)CS2+(X 2Πg)→ CS2+(A2Πu)through one-photon excitation,(ii)CS2+(A2Πu)→ CS2+(X*)via internal conversion process due to the vibronic coupling between the A and X states,(iii)CS2+(X*)→ CS2+(B 2Σ+u)through the second photon excitation,and(iv)CS2+(B 2Σ+u)→CS +(X 2Σ+)+S(3P),because of the potential curve crossing with the repulsive 4Σ- state and/or the 2Σ- state correlated with the second dissociation limit. However,when the dissociation laser overlaps the ionization laser in time scale in the laser-molecule interaction zone,the appearance threshold is not available in the PHOFEX spectrum. This fact shows that there are other mixed three-photon paths of[1+1+1'],[1+1'+1'],and[1+1'+1]to produce CS+ fragment ion from CS2+ molecular ions besides the above[1+1]dissociation mechanism,that is,CS2+(X 2Πg)→ CS2+(A 2Πu)through one-photon excitation[1]of dissociation laser,CS2+(A 2Πu)→CS2+(X*)via internal conversion process due to the vibronic coupling between the A and X states,CS2+(X*)→ CS2+(B 2Σ +u)through the second photon excitation by dissociation laser[1]or ionization laser[1'],and third photon excitation by ionization laser[1']or dissociation laser[1]to reach the adiabatic appearance potential to produce CS+ with the dissociation laser wavelengths longer than 423. 89 nm,at which the[1+1]dissociation mechanism to get to CS+ is unavailable.  相似文献   

12.
The first structural reports of anhydrous salts containing the CS2N3 moiety are presented. The new M(+)CS2N3- species (M = NH4 (1), (CH3)4N (2), Cs (3), K (4)) were characterized by vibrational spectroscopy (IR, Raman), as well as multinuclear NMR spectroscopy (1H, 13C, 14N NMR). Moreover, the solid-state structures of NH4CS2N3 (1) [orthorhombic, Pbca, a = 10.6787(1) A, b = 6.8762(1) A, c = 15.2174(2) A, V = 1117.40(2) A3, Z = 8] and (H4C)4NCS2N3 (2) [monoclinic, P2(1)/m, a = 5.9011(1) A, b = 7.3565(2) A, c = 10.9474(3) A, beta = 91.428(1) degrees, V = 475.09(2) A3, Z = 2] were determined using X-ray diffraction techniques. The covalent compound CH3CS2N3 (5) was prepared by the reaction of methyl iodide with sodium azidodithiocarbonate and was characterized by vibrational spectroscopy (IR, Raman), multinuclear NMR spectroscopy (1H, 13C, 14N), and X-ray diffraction techniques [monoclinic, P2(1)/m, a = 5.544(1) A, b = 6.4792(7) A, c = 7.629(1) A, beta = 105.53(2) degrees, V = 264.06(7) A3, Z = 2]. Furthermore, the gas-phase structure of 5 was calculated (MPW1PW91/cc-pVTZ) and found to be in very good agreement with the experimentally determined structure. Improved synthetic routes for the recently reported dipseudohalogen (CS2N3)2 and interpseudohalogen CS2N3CN (6) are described, and the calculated gas-phase structure of 6 was compared with the experimentally determined structure (X-ray). The vibrational spectra of 6 and HCS2N3 (7) are also reported. Furthermore, several plausible isomers for 7 were calculated in an attempt to rationalize the experimentally observed structure which has N-H and not S-H connectivity. The lowest energy isomer for 7 is in agreement with the experimentally observed structure, and the Br?nsted acidity was calculated at the MPW1PW91/cc-pVTZ level of theory. The unknown CSe2N3- anion (8) was also investigated both theoretically and experimentally, and the structure and vibrational data for the unknown CTe2N3- anion (9) were investigated by quantum-chemical calculations using a quasi-relativistic pseudopotential for Te (ECP46MWB) and a cc-pVTZ basis set for C and N. The gas-phase structure of 9 is predicted to be that of a five-membered ring in analogy to the sulfur and selenium analogues.  相似文献   

13.
14.
15.
Modified Synthesis and Crystal Structure Determination of β-Na2CS3 . β-Na2CS3 has been synthesized via a novel route from Na2S and CS2, and its crystal structure has been determined using single crystal techniques (for crystallographic informations see “Inhaltsübersicht”). Structural relations between Li2CO3 and β-Na2CS3 are discussed. The ionic conductivities are 3 · 10?11S cm?1 and 1.3 · 10?2S cm?1 at 50°C and 250°C, respectively.  相似文献   

16.
Gaussian-3 and MP2/aug-cc-pVnZ methods have been used to calculate geometries and thermochemistry of CS(2)(H2O)n, where n=1-4. An extensive molecular dynamics search followed by optimization using these two methods located two dimers, six trimers, six tetramers, and two pentamers. The MP2/aug-cc-pVDZ structure matched best with the experimental result for the CS(2)(H2O) dimer, showing that diffuse functions are necessary to model the interactions found in this complex. For larger CS(2)(H2O)n clusters, the MP2/aug-cc-pVDZ minima are significantly different from the MP2(full)6-31G* structures, revealing that the G3 model chemistry is not suitable for investigation of sulfur containing van der Waals complexes. Based on the MP2/aug-cc-pVTZ free energies, the concentration of saturated water in the atmosphere and the average amount of CS(2) in the atmosphere, the concentrations of these clusters are predicted to be on the order of 10(5) CS(2)(H2O) clusters.cm(-3) and 10(2) CS(2)(H2O)(2) clusters.cm(-3) at 298.15 K. The MP2/aug-cc-pVDZ scaled harmonic and anharmonic frequencies of the most abundant dimer cluster at 298 K are presented, along with the MP2/aug-cc-pVDZ scaled harmonic frequencies for the CS(2)(H(2)O)(n) structures predicted to be present in a low-temperature molecular beam experiment.  相似文献   

17.
The bimolecular reactions in the title were measured behind shock waves by monitoring the O-atom production in COS? O2? Ar and CS2? O2? Ar mixtures over the temperature range between 1400 and 2200 K. A value of the rate constant for S + O2 → SO + O was evaluated to be (3.8 ± 0.7) × 1012 cm3 mol?1 s?1 between 1900 and 2200 K. This was connected with the data at lower temperatures to give an expression k2 = 1010.85 T0.52 cm3 mol?1 s?1 between 250 and 2200 K. An expression of the rate constant for CS2 + O2 → CS + SO2 was obtained to be k21 = 1012.0 exp(?32 kcal mol?1/RT) cm3 mol?1 s?1 with an error factor of 2 between 1500 and 2100 K.  相似文献   

18.
Single and multiple photon processes are identified in the 193 nm excimer laser photolysis of CS2. CS(X1Σ+, υ = 1 to 5, J = 5 to 45) is observed by dye laser induced fluorescence of the A1Π ↔ ; X1Σ+ transition, following the single photon 193 nm photolysis of CS2. Multiple photon 193 nm generation of CS fragment emission from 620 to 170 nm is also reported. A partial assignment of the emission spectrum identifies fluorescence from the CS A′1Σ+ and A1Π states.  相似文献   

19.
We have studied electron transfer from state-selected Rydberg atoms to (CS2) N and CS2(Ar) N clusters and compared the results to Rydberg electron transfer to isolated CS2 molecules. At large Rydberg principal quantum numbers (n>20), the influence of the positive ionic core becomes negligible and we are able to directly investigate the competition between electronic autodetachment of the anions and intracluster energy exchanges between the anions and their environment. We show that argon atoms are unable to achieve efficient internal energy exchanges in heterogeneous clusters as compared to the high efficiency of CS2 molecules in homogeneous clusters.  相似文献   

20.
Absorption spectrum of H(2)CS in the region 5.6-9.5 eV was recorded with a continuously tunable light source of synchrotron radiation. After we subtracted absorption bands of CS(2), our spectrum clearly shows vibrational progressions associated with transitions (1)A(1)(pi,pi*)-X (1)A(1) and (1)B(2)(n,4s)-X (1)A(1) in the region 5.6-6.7 eV. A spectrum from which absorption of C(2)H(4) and CS(2) are subtracted shows several discrete bands in the region 6.9-9.5 eV. A Rydberg state (1)B(2)(n,4p(z)) lying below Rydberg state (1)A(1)(n,4p(y)) is confirmed, and the C-H symmetric stretching (nu(1)) and CH out-of-plane bending (nu(4)) modes for a transition (1)B(2)(n,4s)-X (1)A(1) are identified. New transitions to Rydberg states associated with excitation to 5s-11s, 5p(z)-7p(z), 5p(y)-7p(y), and 3d-6d are identified based on quantum defects and comparison with vertical excitation energies predicted with time-dependent density-functional theory (TD-DFT) and outer-valence Green's-function (OVGF) methods. For lower excited states predictions from these TD-DFT6-31+G calculations agree satisfactorily with experimental values, but for higher Rydberg states the OVGF method using aug-cc-pVTZ basis set augmented with extra diffuse functions yields more accurate predictions of excitation energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号