首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
标题螺吡喃(Sp)甲醇溶液直接和二苯酮敏化光发色反应的量子产率分别是0.38和0.53, 2, 3-丁二酮首先猝灭三线态的光发色, 然后, 在较高浓度时, 猝灭单线态的光反应。从敏化和猝灭反应的动力学分析, 计算在直接光解中的初级光物理、光化学过程的量子产率。数据表明, Sp的三线态和单线态都有光反应活性, 这与反应状态相关图分析结果相一致。三线态的参数是3^г=2.2×10^-3ms, k~r=9.13×10^4s^-1, k~d=8.27×10^4s^-1。而且, 一旦生成激发三线态, 它的光化学活性大约比激发单线态大2倍。  相似文献   

2.
Triplet state properties including transient triplet absorption spectrum, intersystem crossing yields in solution at room temperature and phosphorescence spectra, quantum yields and lifetimes at low temperature as well as singlet oxygen yields were obtained for poly(N-vinylcarbazole) (PVK) in 2-methyl-tetrahydrofuran (2-MeTHF), cyclohexane or benzene. The results allow the determination of the energy value for the lowest lying triplet state and also show that triplet formation and deactivation is a minor route for relaxation of the lowest excited singlet state of PVK. In addition, they show the triplet state is at higher energy than reported heavy metal dopants used for electrophosphorescent devices, such that if this is used as a host it will not quench their luminescence.  相似文献   

3.
Five different verdins, including one zinc metal chelate, were examined by laser flash techniques. Triplet molar absorption coefficients, triplet and singlet oxygen quantum yields and triplet lifetimes were determined. Zinc methyl pyroverdin (ZNMPV), copro II verdin trimethyl ester (CVTME) and deuteroverdin methyl ester (DVME) have the highest triplet and singlet oxygen quantum yields. ZNMPV and CVTME have the longest triplet lifetimes. Our data are consistent with singlet oxygen as the primary modality for phototherapy and it is suggested that DVME and CVTME may be useful agents.  相似文献   

4.
Abstract— Triplet extinction coefficients and hence singlet → triplet intersystem crossing quantum yields have been measured in benzene for a number of linear furocoumarins including pseudopsoralen, 5, 8-dimethoxypsoralen, 4, 5', 8-trimethylpsoralen and 3-carbethoxypseudopsoralen. These triplet yields were then used in conjunction with the corresponding quantum yields of singlet oxygen formation, measured in oxygenated solution, to estimate the fractions of furocoumarin triplets which when quenched by ground state oxygen produce singlet excited oxygen, similar data being obtained for psoralen, 5-methoxypsoralen, 8-methoxypsoralen and 3-carbethoxypsoralen. The superoxide anion radical was not detected from these oxygen quenching reactions, nor was a contribution to the singlet oxygen yield found from furocoumarin excited singlet state quenching by oxygen. The fraction of furocoumarin-oxygen quenching interactions leading to singlet oxygen varied between 0.13 (for 5, 8-dimethoxypsoralen) and unity (for 3-carbethoxypsoralen), and thus needs to be taken into account, as well as the triplet quantum yields, in assessing photobiological processes involving singlet oxygen.  相似文献   

5.
The triplet state of pyrromethene 567, a molecule with potential as a solid state laser dye, has been characterized in benzene by pulse radiolysis in terms of its absorption spectrum, lifetime, self-quenching, electronic excitation energy, triplet–triplet extinction coefficient and oxygen quenching rate constant. The use of laser flash photolysis has then allowed determination of the triplet quantum yield, efficiency of formation of singlet oxygen (1Δg), and the rate constant for reaction of the latter species with the ground state. The affects of oxygen on the fluorescence and triplet yields demonstrate that oxygen-induced intersystem crossing is important, the sum of these parameters being unity within experimental error. The mechanism of reaction of P-567 with 1Δg in benzene is predominantly physical in character with only a small (6%) contribution from chemical reaction.  相似文献   

6.
Abstract— The Stern-Volmer constants for fluorescence quenching by tetramethylethylene decrease in the order DMC ≫ DHP > F-2 > 8-MOP. The same order was observed for the quantum yields of [2+2] cycloaddition reaction with tetramethylethylene on direct irradiation. In [2+2] photocycloaddition of F-2 with tetramethylethylene in ethanol, the ratio of quantum yields deduced from singlet and triplet states of F-2; φ3010, is about 5. The excited triplet state is the reactive state for the [2+2] photocycloaddition of F-2 with tetramethylethylene in solution but the excited singlet state of F-2 becomes very important in biological conditions.  相似文献   

7.
The synthesis, photophysical and photochemical properties of the tetra- and octa-[4-(benzyloxyphenoxy)] substituted gallium(III) and indium(III) phthalocyanines are reported for the first time. The new compounds have been characterized by elemental analysis, IR, 1H NMR spectroscopy and electronic spectroscopy. General trends are described for quantum yields of photodegredation, fluorescence quantum yields and lifetimes, triplet lifetimes and triplet quantum yields as well as singlet oxygen quantum yields of these compounds in dimethylsulfoxide (DMSO). Substituted indium phthalocyanine complexes (7b9b) showed much higher quantum yields of triplet state and shorter triplet lifetimes, compared to the substituted GaPc derivatives due to enhanced intersystem crossing (ISC) in the former. The gallium and indium phthalocyanine complexes showed phototransformation during laser irradiation due to ring reduction. The singlet oxygen quantum yields (ΦΔ), which give an indication of the potential of the complexes as photosensitizers in applications where singlet oxygen is required (Type II mechanism) ranged from 0.51 to 0.94. Thus, these complexes show potential as photodynamic therapy of cancer.  相似文献   

8.
The photophysical properties of 5,15-diphenyl-2,3-dihydroxychlorin (DPCOH) and 5,15-diphenyl-chlorin (DPC) in organic solution were studied. Absorption, fluorescence, triplet state and photobleaching experiments are reported. The ground states of both compounds show strong absorbance in red region (lambda = 638 nm, epsilon = 35,000 M(-1) cm(-1) and lambda = 645 nm, epsilon = 42,000 M(-1) cm(-1), respectively) and the singlet excited states show low fluorescence quantum yields of 0.0802 and 0.150 in benzene and the lifetimes are 7.38 and 10.18 ns, respectively. Absorption spectra of the triplet states were also measured and they have nearly the same triplet state lifetimes of 53 micros (DPCOH) and 50 micros (DPC). The triplet quantum yields are 0.82 and 0.75, respectively. The data of photobleaching quantum yields show that the presence of oxygen does not significantly affect the photobleaching. All the results demonstrate that both diphenylchlorines are good candidates for second-generation photosensitizer in photodynamic therapy.  相似文献   

9.
The quantum yield for the release of leaving groups from o‐nitrobenzyl “caged” compounds varies greatly with the nature of these leaving groups, for reasons that have never been well understood. We found that the barriers for the primary hydrogen‐atom transfer step and the efficient nonradiative processes on the excited singlet and triplet surfaces determine the quantum yields. The excited‐state barriers decrease when the exothermicity of the photoreaction increases, in accord with Bell–Evans–Polanyi principle, a tool that has never been applied to a nonadiabatic photoreaction. We further introduce a simple ground‐state predictor, the radical‐stabilization energy, which correlates with the computed excited‐state barriers and reaction energies, and that might be used to design new and more efficient photochemical processes.  相似文献   

10.
Photobase generators are species that allow the photocatalysis of various reactions, such as thiol-Michael, thiol-isocyanate, and ring-opening polymerization reactions. However, existing compounds have complex syntheses and low quantum yields. To overcome these problems, photobase generators based on the photodecarboxylation reaction were developed. We synthesized and studied the photochemistry and photophysics of two xanthone photobase, their carboxylic acid precursors, and their photoproducts to understand the photobase generation mechanism. We determined accurate quantum yields of triplet states and photobase generation. The effect of the intermediate radical preceding the base release was demonstrated. We characterized the photophysics of the photobase by femtosecond spectroscopy and showed that the photodecarboxylation process occurred from the second excited triplet state with a rate constant of 2.2×109 s−1.  相似文献   

11.
Abstract— Quantum yields for the destruction of tryptophan by a single 500 J flash in aqueous solution have been determined over the pH range 1–13 in both air-equilibrated and nitrogen-saturated conditions. When these quantum yields are compared with the quantum yields for radical formation and photoejection of electrons, it is found that there is good agreement only for the nitrogen-saturated case. In air-equilibrated solutions of tryptophan, there is a large disparity between the measured degradation quantum yields and those for photoejection of electrons and radical formation. Oxygen, therefore, is playing a major role in the photochemical decomposition and it is proposed that the major reaction which occurs, under normal atmospheric conditions, is the reaction of the lowest triplet excited state of tryptophan with oxygen.
Preliminary photolysis-product distributions against pH are discussed, and indicate that a total of nine major products are formed in the presence of oxygen.  相似文献   

12.
The photophysical behavior of two xanthene dyes, Eosin Y and Phloxine B, included in microcrystalline cellulose particles is studied in a wide concentration range, with emphasis on the effect of dye concentration on fluorescence and triplet quantum yields. Absolute fluorescence quantum yields in the solid‐state were determined by means of diffuse reflectance and steady‐state fluorescence measurements, whereas absolute triplet quantum yields were obtained by laser‐induced optoacoustic spectroscopy and their dependence on dye concentration was confirmed by diffuse reflectance laser flash photolysis and time‐resolved phosphorescence measurements. When both quantum yields are corrected for reabsorption and reemission of radiation, Φ F values decrease strongly on increasing dye concentration, while a less pronounced decay is observed for Φ T. Fluorescence concentration quenching is attributed to the formation of dye aggregates or virtual traps resulting from molecular crowding. Dimeric traps are however able to generate triplet states. A mechanism based on the intermediacy of charge‐transfer states is proposed and discussed. Calculation of parameters for photoinduced electron transfer between dye molecules within the traps evidences the feasibility of the proposed mechanism. Results demonstrate that photoactive energy traps, capable of yielding dye triplet states, can be formed even in highly‐concentrated systems with random dye distributions.  相似文献   

13.
Light-induced degradation of the riboflavin derivatives is reported, including 5-deaza-riboflavin, iso-6,7-riboflavin, 3-methyl-tetra-acetyl-riboflavin (3MeTARF), and 3-benzyl-lumiflavin. The studied compounds undergo photolytic processes with considerable quantum yields in methanolic solutions (φ ≈ 10(-3)-10(-4) mol einst(-1)). Photolysis in anaerobic conditions is more efficient than that in the presence of oxygen. Experiments show that triplet excited state of flavin molecules is involved in the reactions. The main photoproducts are the respective alloxazinic and isoalloxazinic derivatives of the substrates. 3MeTARF reveals higher photostability than riboflavin. The values of photodegradation quantum yields were estimated for the four studied derivatives.  相似文献   

14.
许慧君  薛念念 《化学学报》1987,45(6):551-557
本文研究了各种金属酞菁以及带有不同取代基的锌酞菁敏化光还原硝基化合物的反应。确定了光敏还原反应的主要产物是氨基和羟氨基化合物;羟氨基化合物与亚硝基化合物通过暗反应缩合生成偶氮N-氧化物。测定了它们的氧化还原电位和荧光量子产率。从敏化光还原反应的量子产率及荧光猝灭与硝基化合物浓度的依赖关系,计算出各种金属酞菁激发单重态与三重态的敏化效率。受激发金属酞菁将电子转移至硝基化合物是敏化光还原反应的起始过程。电子转移生成离子自由基对后,电荷分离与逆电子转移过程相互竞争。由于自旋选择规则的限制,激发三重态的敏化效率一般比激发单重态的敏化效率高。为了提高敏化光还原反应的效率,除选择三重态产率较高的敏化剂外,改变敏化剂的结构可提高敏化剂激发单重态的敏化效率,从而提高敏化光还原反应的量子产率.  相似文献   

15.
The photobehavior of five photochromic dipyrrolyl-perfluoro-cyclopentenes was studied by steady state and time-resolved absorption spectroscopy. The quantum yields of the UV-photoinduced ring-closing reaction (coloration) and the visible-stimulated cycloreversion reaction (bleaching) were measured. Kinetic and thermodynamic parameters of thermal bleaching were also determined. Nanosecond time-resolved experiments showed formation of a transient, which was not a precursor of the reaction photoproduct. This transient was tentatively assigned to a radical cation formed by direct photoionization through a short-lived triplet state. The nature of the transient species was supported by photoinduced electron transfer to electron acceptors.  相似文献   

16.
The photochemistry of diphenylamine (DPA), N-methyldiphenylamine (MeDPA), and triphenylamine (TPA) was studied in solution at room temperature. The major photoprocess was cyclization, and the quantum yields were Phicyc = 0.02-0.6. The photoinduced oxygen uptake/consumption, studied in air-saturated acetonitrile-water or methanol-water, was efficient. Three subsequent transients, the polyphenylamine triplet state, the 4a,4b-dihydrocarbazole triplet state, and its labile ground state, were accessible by laser flash photolysis prior to carbazole formation. Their yields were determined and compared with the Phicyc values. Oxygen can reduce or enhance Phicyc since one step, quenching of the polyphenylamine triplet state, blocks cyclization and one step, scavenging of dihydrocarbazole, favors cyclization since it competes successfully with the back-reaction to the substrate. The former is dominant for DPA in solvents with low and high polarity and the latter is dominant for MeDPA preferentially in nonpolar solvents as well as for TPA in all solvents.  相似文献   

17.
Diaryl acetylenes, in which one of the aryl groups is either a pyridine or a pyrazine, undergo efficient triplet state photocycloaddition to 1,4-cyclohexadiene with formation of 1,5-diaryl substituted tetracyclo[3.3.0.0(2,8).0(4,6)]octanes (homoquadricyclanes). In the case of pyrazinyl acetylenes, the primary homoquadricyclane products undergo a secondary photochemical rearangement leading to diaryl substituted tricyclo[3.2.1.0(4,6)]oct-2-enes. Mechanistic and photophysical studies suggest that photocycloaddition proceeds through an electrophilic triplet excited state whereas the subsequent rearrangement to the tricyclooctenes proceeds through a singlet excited state. Chemical and quantum yields for the cycloaddition, in general, correlate with the electron acceptor character of aryl substituents but are attenuated by photophysical factors, such as the competition between the conversion of acetylene singlet excited state into the reactive triplet excited states (intersystem crossing: ISC) and/or to the radical-anion (photoelectron transfer from the diene to the excited acetylene: PET). Dramatically enhanced ISC between pi-pi S(1) state and "phantom" n,pi triplet excited state is likely to be important in directing reactivity to the triplet pathway. The role of PET can be minimized by the judicious choice of reaction conditions (solvent, concentration, etc.). From a practical perspective, such reactions are interesting because "capping" of the triple bond with the polycyclic framework orients the terminal aryl (4-pyridyl, 4-tetrafluoropyridyl, phenyl, etc.) groups in an almost perfect 60 degrees angle and renders such molecules promising supramolecular building blocks, especially in the design of metal coordination polymers.  相似文献   

18.
The excited state processes of riboflavin, flavin mononucleotide and flavin adenine dinucleotide in argon-saturated aqueous solution were studied in the presence of lysozyme or bovine serum albumin (BSA). UV–Vis absorption and fluorescence spectroscopy indicates that the noncovalent flavin-protein binding is relatively weak. Quenching of the flavin triplet state by BSA, observed by time-resolved photolysis, is less efficient than by lysozyme. Light-induced oxidation of the two proteins and reduction of the three flavins were studied. The quantum yields of the former and latter in the absence of oxygen are up to 0.1 and 0.04, respectively. The effects of pH and sensitizer and protein concentrations were examined in greater detail. The proposed reaction is electron transfer from the tryptophan moiety to the flavin triplet rather than excited singlet state.  相似文献   

19.
Eight differently substituted title dye compounds have been investigated regarding intersystem crossing, triplet state, fluorescence and singlet excited state pKa properties. In general, non-halogenated oxazines and thiazines as well as a mono bromooxazine show very low triplet quantum yields, phi tau (less than 0.03) and relatively long triplet lifetimes (approximately 40 microseconds) in acidic methanol. The phi tau data correlate well with known singlet oxygen yields. In basic methanol no triplet transient is observed but a significant yield of a ground state transient protonated (base dye) form is produced with a short lifetime, approximately 400 ns. Fluorescence can be seen simultaneously from both the excited base and the protonated base dye forms in basic methanol. For iodinated oxazine or thiazines, the triplet yield increases and can be as high as 0.5 (diiodo case) in acidic methanol. The triplet lifetimes are further shortened to approximately 10 microseconds compared to the non-iodinated derivatives above. The triplet yields of the iodo compounds are higher or equal to known singlet oxygen yields. In basic methanol triplet yields up to 0.2 can be seen, the triplet lifetime are shortened still further to 1 microsecond but no observable protonated form is produced (in distinction to the non-iodinated cases). Consideration is given to the correlation of triplet and singlet oxygen yields, ground and excited pKa properties, spin-orbit coupling and internal conversion properties, solvent effects, and phototherapeutic activity of these dyes.  相似文献   

20.
Photolysis of aqueous kynurenine (KN) solutions results in the formation of triplet kynurenine TKN. In low pH solutions, triplet formation occurs with almost 100% efficiency, while in neutral solutions the triplet quantum yield is PhiT = 0.018 +/- 0.004. The dissociation constant of TKN, which is attributed to deprotonation of the anilino group, has a pKa value of 4.7. Similar triplet absorption spectra were obtained under direct and acetone-sensitized photolysis. The large difference in quantum yields as a function of pH is attributed to excited-state properties of the first excited singlet state of KN. The rate constant quenching for TKN by oxygen is kq = 2 x 10(9) M(-1) s(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号