首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 64 毫秒
1.
《Electrophoresis》2018,39(4):608-615
A sensitive method using CZE‐UV detection has been developed for the determination of five tetracycline antibiotics in human urine samples. To improve the sensitivity of the method, an on‐line preconcentration strategy, named field‐amplified sample injection, has been developed, based on the electrokinetic injection of the sample, which requires only a 1:100 dilution with sample solvent before injection. Under optimum conditions, sensitivity enhancement factors ranged from 450 to 800 for the studied compounds. The applicability of the proposed method was demonstrated by the determination of these antibiotics in spiked urine samples. The limits of quantification were lower than 0.8 mg/L and the precision (intra‐ and inter‐day), expressed as %RSD was below 14%. Recoveries ranged from 92.1 to 96.7%. Thus, the proposed procedure is a simple, fast and efficient strategy which could be used as therapeutic drug monitoring in human urine samples.  相似文献   

2.
A novel method for the biological monitoring of benzene‐exposed workers has been developed through ultra‐performance liquid chromatography coupled to tandem mass spectrometry. The method uses trans,trans‐muconic acid in urine as the benzene‐exposure biomarker. The method was developed using a triple quadrupole mass spectrometer with enough sensitivity to facilitate diluting and injecting the urine samples directly, rather than performing a solid‐phase extraction procedure as is common in the available protocols. Moreover, compared with a conventional high‐pressure liquid chromatography system, the separation power provided by the ultra‐performance liquid chromatography system allows a 10‐fold reduction in run time. The method was adjusted to a dynamic range of between 198.9 and 4916.7 µg/L to cover the biological exposure index of trans,trans‐muconic acid in urine. Also, the method demonstrated intra‐day and inter‐day precision at 98%, and accuracy within an acceptable range of 101 ± 8%. The method has been used to quantify various types of urine samples, such as workers' urine and inter‐laboratory proficiency tests. Depending on the sample, the quantified levels ranged from less than the limit of quantitation to 3836.7 µg/L. No levels exceeding the calibration range were detected in the urine of workers, and the reported concentrations in urine for the proficiency tests were, as expected, based on known values. Moreover, the new method using sample dilution and faster chromatographic run was more effective, facilitating fast communication of results, as needed, to decision‐makers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
A monolithic methacrylate packed 96‐tips device was used for the extraction of the busulfan and cyclophosphamide in whole blood samples. Using a packed 96‐tips set, a 96‐well plate could be handled in about 2 min. The key aspect of the monolithic phase is that monolithic material can offer both good extraction capacity and low‐back‐pressure properties. The validation of the methodology showed that the accuracy values of quality‐control samples were between 99 and 113% for busulfan, and between 103 and 110% for cyclophosphamide. The inter‐day precision ranged from 7.0 to 12% for busulfan and from 13 to 16% for cyclophosphamide. The standard calibration curves were obtained within the concentration range 5–2000 nm for busulfan and from 10 to 5000 nm for cyclophosphamide in blood samples. The coefficients of determination were ≥0.99. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
We proposed an integrated bioanalytical method development and validation approach: (1) method screening based on analyte's physicochemical properties and metabolism information to determine the most appropriate extraction/analysis conditions; (2) preliminary stability evaluation using both quality control and incurred samples to establish sample collection, storage and processing conditions; (3) mock validation to examine method accuracy and precision and incurred sample reproducibility; and (4) method validation to confirm the results obtained during method development. This integrated approach was applied to the determination of compound I in rat plasma and compound II in rat and dog plasma. The effectiveness of the approach was demonstrated by the superior quality of three method validations: (1) a zero run failure rate; (2) >93% of quality control results within 10% of nominal values; and (3) 99% incurred sample within 9.2% of the original values. In addition, rat and dog plasma methods for compound II were successfully applied to analyze more than 900 plasma samples obtained from Investigational New Drug (IND) toxicology studies in rats and dogs with near perfect results: (1) a zero run failure rate; (2) excellent accuracy and precision for standards and quality controls; and (3) 98% incurred samples within 15% of the original values.  相似文献   

5.
In this study, molecularly imprinting technology and stir bar absorption technology were combined to develop a microextraction approach based on a molecularly imprinted polymeric stir bar. The molecularly imprinted polymer stir bar has a high performance, is specific, economical, and simple to prepare. The obtained naftopidil‐imprinted polymer‐coated bars could simultaneously agitate and adsorb naftopidil in the sample solution. The ratio of template/monomer/cross‐linker and conditions of template removal were optimized to prepare a stir bar with highly efficient adsorption. Fourier transform infrared spectroscopy, scanning electron microscopy, selectivity, and extraction capacity experiments showed that the molecularly imprinted polymer stir bar was prepared successfully. To utilize the molecularly imprinted polymer stir bar for the determination of naftopidil in complex body fluid matrices, the extraction time, stirring speed, eluent, and elution time were optimized. The limits of detection of naftopidil in plasma and urine sample were 7.5 and 4.0 ng/mL, respectively, and the recoveries were in the range of 90–112%. The within‐run precision and between‐run precision were acceptable (relative standard deviation <7%). These data demonstrated that the molecularly imprinted polymeric stir bar based microextraction with high‐performance liquid chromatography was a convenient, rapid, efficient, and specific method for the precise determination of trace naftopidil in clinical analysis.  相似文献   

6.
A novel on‐line synergistic proconcentration strategy coupling field‐amplified sample stacking and micelle to cyclodextrin stacking for cationic analytes in capillary zone electrophoresis has been proposed and applied for the separation and determination of two alkaloids, matrine, and oxymatrine in complicated matrix samples. The approach was performed by the long injection of sample in a low‐conductivity sodium dodecyl benzene sulfonate solution followed by the injection of hydroxypropyl‐β‐cyclodextrin solution in higher conductivity. The stacking mechanism of this method has been expounded and parameters affecting stacking effect have been optimized in our study. Under the optimum experimental conditions, 169‐ and 218‐fold sensitivity improvements were achieved for matrine and oxymatrine when compared with normal injection. Analytical indicators including linearity, limits of detection, and reproducibility (intra‐ and inter‐day relative standard deviations) were evaluated. Moreover, sample matrix effect was studied using compound flavescent sophora and salicylic acid powder and spiked urine samples. The developed method is an attempt for the combination of micelle to cyclodextrin stacking with other stacking methods. It could be a good alternative choice for the determination of alkaloids in a complex sample matrix.  相似文献   

7.
A semi‐micro column HPLC‐fluorescence method for routine determination of thiol derivatives such as homocysteine (Hcy), cysteine (Cys) and cysteamine (CA) is described. The thiol derivatives labeled with ammonium‐7‐fluorobenzo‐2‐oxa‐1,3‐diazole‐4‐sulfonate (SBD‐F) were isocratically separated within 12 min on a semi‐micro ODS column (Daisopak‐SP‐120‐5‐ODS‐BP) with a mixture of 25 mm acetate buffer (pH 2.00) and CH3CN as a mobile phase. The purity and similarity of SBD‐thiols by a multi‐wavelength fluorescence detector were more than 92.3 and 96.7%. The detection limits of Hcy, Cys and CA at a signal‐to‐noise ratio of 3 were 0.16, 0.47 and 0.03 µm , respectively. Furthermore validation parameters such as accuracy, precision and robustness of the proposed method showed satisfactory results. Almost 850 plasma sample injections (range 572–1076, n = 3) for a column could be performed without differences in retention time and peak heights of labels. As an application of the proposed method, the determination of thiol derivatives in normal human plasma (n = 103) was demonstrated. The correlation coefficients between Hcy vs Cys and Hcy vs CA were 0.38 and −0.35, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A liquid chromatographic–electrospray ionization–time‐of‐flight/mass spectrometric (LC‐ESI‐TOF/MS) method was developed and applied for the determination of WKYMVm peptide in rat plasma to support preclinical pharmacokinetics studies. The method consisted of micro‐elution solid‐phase extraction (SPE) for sample preparation and LC‐ESI‐TOF/MS in the positive ion mode for analysis. Phenanthroline (10 mg/mL) was added to rat blood immediately for plasma preparation followed by addition of trace amount of 2 m hydrogen chloride to plasma before SPE for stability of WKYMVm peptide. Then sample preparation using micro‐elution SPE was performed with verapamil as an internal standard. A quadratic regression (weighted 1/concentration2), with the equation y = ax2 + bx + c was used to fit calibration curves over the concentration range of 3.02–2200 ng/mL for WKYMVm peptide. The quantification run met the acceptance criteria of ±25% accuracy and precision values. For quality control samples at 15, 165 and 1820 ng/mL from the quantification experiment, the within‐run and the between‐run accuracy ranged from 92.5 to 123.4% with precision values ≤15.1% for WKYMVm peptide from the nominal values. This novel LC‐ESI‐TOF/MS method was successfully applied to evaluate the pharmacokinetics of WKYMVm peptide in rat plasma.  相似文献   

9.
A sensitive and specific method based on liquid chromatography‐tandem mass spectrometry using electrospray ionization (LC‐ESI‐MS/MS) has been developed for the determination of Schisandrin and Schisandrin B in rat plasma. A 100 μL plasma sample was extracted by methyl tert‐butyl ether after spiking the samples with nimodipine (internal standard) and performed on an XTerra®MS‐C18 column (150 mm × 2.1 mm, 3.5 μm) with the mobile phase of acetonitrile–water–formic acid (80:20:0.2, v/v) at a flow rate of 0.2 mL/min in a run time of 8.5 min. The lower limit of quantification of the method was 40 ng/mL for Schisandrin and 20 ng/mL for Schisandrin B. The method showed reproducibility with intra‐day and inter‐day precision of less than 13.8% RSD, as well as accuracy, with inter‐ and intra‐assay accuracies between 93.5 and 107.2%. Finally, the LC‐ESI‐MS/MS method was successfully applied to study the pharmacokinetics of Schisandrin and Schisandrin B in rats after administration of Wurenchun commercial formulations to rats. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Plasma samples were conventionally stored at freezing conditions until the time of detection. Such a technique, when carried out over an extended period, is energy consuming; in addition, preparation and transportation of stored samples is inconvenient. In this study, a freeze‐dried storage and preparation method was proposed to determine the presence of mycophenolic acid (MPA) in plasma. Fresh plasma samples were freeze‐dried using a device, and then stored at ambient temperature. After the stored samples were soaked with methanol spiked with the internal standard, high‐performance liquid chromatography was conducted to detect MPA. The proposed method was demonstrated to be precise and accurate over the linear range of 0.5–50 μg mL−1, with both intra‐ and inter‐day precision being <7% and biases <10%. The freeze‐dried samples were stable at ambient temperature for at least 40 days. This method was also successfully applied to the pharmacokinetic study of MPA in healthy volunteers. Pharmacokinetic parameters, such as maximum plasma concentration, time point of maximum plasma concentration and elimination half‐life, among others, were consistent with the results in the published study. This proposed technique was proved to be simple, reproducible and energy saving. This approach could also simplify the storage and analysis of samples in clinical and scientific drug research.  相似文献   

11.
《Electrophoresis》2017,38(3-4):494-500
An easy‐to‐do paper‐based solid‐phase microextraction (p‐SPME) was developed for determination of 8‐hydroxy‐2’‐deoxyguanosine (8‐OHdG) in urine sample by CE‐LIF. Small piece of filter paper was used as a solid phase to extract 8‐OHdG from urine sample. Its primary mechanism is based on the hydrogen‐bonding interaction between 8‐OHdG and cellulose molecules. The effects of the pH of the sample solution, extraction time, and temperature on the peak area of the analyte were investigated in order to obtain the optimal p‐SPME conditions. Comparing with the untreated sample, the p‐SPME can significantly reduce the interference to the separation of 8‐OHdG by CE‐LIF. Meanwhile, the p‐SPEM can provide more than three times concentrated effect. The developed method was evaluated according to an FDA guideline for biological analysis. The precisions (RSD%, n = 5) of the peak area and migration time of the analyte at three different concentrations were within 3.02–5.82% and 0.92–1.58%, respectively. The limit of identification of the method is about 5 nM according to the significant difference between two sets of the samples with and without spiking the standard (Student's t ‐test, p < 0.05). Good linearity was obtained in the range of 10–1000 nM (R 2>0.99) based on the standard addition. The recoveries at three different concentrations were within 99.8–103.5%. The results of the real sample analysis are consistent with those reported in our previous paper (Electrophoresis 2014, 35, 1873–1879).  相似文献   

12.
Affected relatives are essential for pedigree linkage analysis, however, they cause a violation of the independent sample assumption in case-control association studies. To avoid the correlation between samples, a common practice is to take only one affected sample per pedigree in association analysis. Although several methods exist in handling correlated samples, they are still not widely used in part because these are not easily implemented, or because they are not widely known. We advocate the effective sample size method as a simple and accessible approach for case-control association analysis with correlated samples. This method modifies the chi-square test statistic, p-value, and 95% confidence interval of the odds-ratio by replacing the apparent number of allele or genotype counts with the effective ones in the standard formula, without the need for specialized computer programs. We present a simple formula for calculating effective sample size for many types of relative pairs and relative sets. For allele frequency estimation, the effective sample size method captures the variance inflation exactly. For genotype frequency, simulations showed that effective sample size provides a satisfactory approximation. A gene which is previously identified as a type 1 diabetes susceptibility locus, the interferon-induced helicase gene (IFIH1), is shown to be significantly associated with rheumatoid arthritis when the effective sample size method is applied. This significant association is not established if only one affected sib per pedigree were used in the association analysis. Relationship between the effective sample size method and other methods - the generalized estimation equation, variance of eigenvalues for correlation matrices, and genomic controls - are discussed.  相似文献   

13.
A simple, rapid and sensitive liquid chromatography/electrospray ionization tandem mass spectrometry (LC‐ESI‐MS/MS) assay method is proposed for the determination of tolvaptan in human plasma samples using tolvaptan d7 as internal standard (IS). Analyte and the IS were extracted from 100 μL of human plasma via simple liquid–liquid extraction. The chromatographic separation was achieved on a C18 column using a mixture of methanol and 0.1% formic acid buffer (80:20, v/v) as the mobile phase at a flow rate of 1.0 mL/min. The calibration curve obtained was linear (r2 ≥ 0.99) over the concentration range of 0.05–501 ng/mL. Method validation was performed as per US Food and Drug Administration guidelines and the results met the acceptance criteria. The intra‐day and inter‐day precision (coefficient of variation) and accuracy results in three validation batches across five concentration levels were well within the acceptance limits. A run time of 2.0 min for each sample made it possible to analyze more samples in a short time, thus increasing the productivity. The proposed method was successfully applied to a pharmacokinetic study of 15 mg and 60 mg tolvaptan tablet formulation in healthy South Indian male subjects under fasting condition. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
A novel and sensitive LC–MS/MS method was developed and validated for determination of sofosbuvir (SF) using eplerenone as an internal standard. The Xevo TQD LC–MS/MS was operated under the multiple‐reaction monitoring mode using electrospray ionization. Extraction with tert‐butyl methyl ether was used in sample preparation. The prepared samples were chromatographed on Acquity UPLC BEH C18 (50 × 2.1 mm, 1.7 μm) column by pumping 0.1% formic acid and acetonitrile in an isocratic mode at a flow rate of 0.35 mL/min. Method validation was performed as per the US Food and Drug Administration guidelines and the standard curves were found to be linear in the range of 0.25–3500 ng/mL for SF. The intra‐ and inter‐day precision and accuracy results were within the acceptable limits. A very short run time of 1 min made it possible to analyze more than 500 human plasma samples per day. A very low quantification limit of SF allowed the applicability of the developed method for determination of SF in a bioequivalence study in human volunteers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Metformin is a well‐known oral antihyperglycemic drug used in treatment of type II diabetes. Analysis of metformin in biological fluids is a challenge owing to its high polarity and small molecular size, which lead to poor retention of metformin on reversed‐phase liquid chromatographic columns. A high‐throughput method was developed and validated for the determination of metformin in rat plasma in support of preclinical toxicology studies, using hydrophilic interaction liquid chromatography tandem mass spectrometry (HILIC‐MS/MS) and Tecan automated sample preparation. Extracted samples were directly injected onto the unbounded silica column with an aqueous–organic mobile phase. This HILIC‐MS/MS method was validated for accuracy, precision, sensitivity, stability, matrix effect, recovery and calibration range. Acceptable intra‐run and inter‐run assay precision (coefficient of variation ≤ 3.9%) and accuracy (99.0–101.8%) were achieved over a linear range of 50–50,000 ng/mL. Metformin is stable in rat plasma for at least 6 h at room temperature, 147 days at ?70°C and through three freeze (?70°C) and thaw cycles. Metformin is also stable in rat whole blood for at least 2 h at room temperature and in an ice–water bath. The validated method was successfully used in support of several preclinical studies where metformin is dosed together with an investigational drug substance. The ruggedness of the validated method was demonstrated by the incurred sample reproducibility test. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
A direct solid sampling flame atomic absorption spectrometric procedure for trace determination of cadmium in biological samples has been developed. Test samples (0.05–2.00 mg) were ground and weighed into small polyethylene vials, which were connected to the device for solid sample introduction into a conventional air/acetylene flame. Test samples were carried as a dry aerosol to a quartz cell, placed between the burner and the optical path, which had a perpendicular entrance and a slit in the upper part. The atomic vapor generated in the flame produced a transient signal that was totally integrated within 1 s. The effect of operating conditions and the extent of grinding on the analytical signal were evaluated. Background signals were always low and a characteristic mass of 0.29 ng Cd was obtained. Calibration was performed using different masses of solid certified reference materials. Results obtained for certified and in-house reference materials were typically within the 95% confidence interval of the certified and/or reference value, and the precision, expressed as relative standard deviation, was between 3.8 and 6.7%. The proposed system is simple and it might be adapted to conventional atomic absorption spectrometers allowing the determination of Cd in more than 80 test samples per hour, excluding weighing.  相似文献   

17.
A rapid and selective HPLC‐UV method was developed for the quantification of linezolid (LNZ) in human plasma and bronchoalveolar lavage (BAL) at the concentrations associated with therapy. Plasma samples were extracted by solid‐phase extraction followed by evaporation to dryness and reconstitution in mobile phase solution. The chromatographic separation was carried out on a C18 column with an isocratic mobile phase consisting of dihydrogen phosphate buffer 50 mm (pH 3.5) and acetonitrile (60:40 v/v). The detection was performed using a photodiode array. Under these conditions, a single chromatographic run could be completed within 12 min. The method was validated by estimating the precision and the accuracy for inter‐ and intra‐day analysis in the concentration range of 25–25600 ng/mL. The method was linear over the investigated range with all the correlation coefficients R > 0.999. The intra‐ and inter‐day precision was within 8.90% and the accuracy ranged from ?4.76 to +5.20%. This rapid and sensitive method was fully validated and could be applied to pharmacokinetic study for the determination of LNZ levels in human plasma and BAL samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A simple and sensitive method based on the combination of derivatization and high‐performance liquid chromatography with ultraviolet and fluorimetric detection was developed for the simultaneous determination of octreotide and gabexate mesylate metabolite in human pancreatic juice samples. Parameters of the derivatization procedure affecting extraction efficiency were optimized. The developed method was validated according to the International Conference on Harmonization guidelines. The calibration curves were linear over a range of 0.1–15 µg/mL for octreotide and 0.20‐15 µg/mL for gabexate mesylate metabolite. Derivatized products of octreotide and gabexate mesylate metabolite were separated on a Luna C18 column (4.6 × 250 mm; 5 µm particle size) using a gradient with a run time of 36 min, without further purification. The limits of detection were 0.025 and 0.05, respectively, for octreotide and gabexate mesylate metabolite. This paper reports the validation of a quantitative high performance liquid chromatography–photodiode array–fluorescence (HPLC‐PDA‐FL) method for the simultaneous analysis of octreotide and gabexate mesylate metabolite in pancreatic juice by protein precipitation using zinc sulfate–methanol–acetonitrile containing the derivatizing reagent, 4‐fluoro‐7‐nitro‐[2,1,3]‐benzoxadiazole (NBD‐F). Derivatized products of octreotide and gabexate mesylate metabolite were separated on a Luna C18 column (4.6 × 250 mm; 5 µm particle size) using a gradient with a run time of 36 min, without further purification. The method was validated over the concentration ranges 0.1–15 and 0.2–15 µg/mL for octreotide and gabexate mesylate metabolite, respectively, in human pancreatic juice. Biphalin and methyl‐p‐hydroxybenzoate were used as the internal standards. This method was successfully utilized to support clinical studies in humans. The results from assay validations show that the method is selective, sensitive and robust. The limit of quantification of the method was 0.1 µg/mL for octreotide and 0.2 µg/mL for gabexate mesylate metabolite, and matrix matched standard curves showed a good linearity up to 15 µg/mL. In the entire analytical range the intra‐ and inter‐day precision (RSD%) values were respectively ≤5.9% and ≤3.1% for octreotide and ≤2.0% and ≤3.9% for gabexate mesylate metabolite. For both analytes the intra‐ and inter‐day accuracy (bias) values ranged respectively from ?6.8 to –2.5% and from ?4.6 to ?5.7%. This method utilizes derivatization with NBD‐F and provides adequate sensitivity for both drugs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
A liquid chromatography–triple quadrupole mass spectrometric (LC‐MS/MS) method was developed and validated for the determination of 5‐nitro‐5′‐hydroxy‐indirubin‐3′‐oxime (AGM‐130) in human plasma to support a microdose clinical trial. The method consisted of a liquid–liquid extraction for sample preparation and LC‐MS/MS analysis in the positive ion mode using TurboIonSprayTM for analysis. d3‐AGM‐130 was used as the internal standard. A linear regression (weighted 1/concentration) was used to fit calibration curves over the concentration range of 10–2000 pg/mL for AGM‐130. There were no endogenous interference components in the blank human plasma tested. The accuracy at the lower limit of quantitation was 96.6% with a precision (coefficient of variation, CV) of 4.4%. For quality control samples at 30, 160 and 1600 pg/mL, the between run CV was ≤5.0 %. Between‐run accuracy ranged from 98.1 to 101.0%. AGM‐130 was stable in 50% acetonitrile for 168 h at 4°C and 6 h at room temperature. AGM‐130 was also stable in human plasma at room temperature for 6 h and through three freeze–thaw cycles. The variability of selected samples for the incurred sample reanalysis was ≤12.7% when compared with the original sample concentrations. This validated LC‐MS/MS method for determination of AGM‐130 was used to support a phase 0 microdose clinical trial. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Three‐dimensional (3D) paper‐based microfluidics, which is featured with high performance and speedy determination, promise to carry out multistep sample pretreatment and orderly chemical reaction, which have been used for medical diagnosis, cell culture, environment determination, and so on with broad market prospect. However, there are some drawbacks in the existing fabrication methods for 3D paper‐based microfluidics, such as, cumbersome and time‐consuming device assembly; expensive and difficult process for manufacture; contamination caused by organic reagents from their fabrication process. Here, we present a simple printing–bookbinding method for mass fabricating 3D paper‐based microfluidics. This approach involves two main steps: (i) wax‐printing, (ii) bookbinding. We tested the delivery capability, diffusion rate, homogeneity and demonstrated the applicability of the device to chemical analysis by nitrite colorimetric assays. The described method is rapid (<30 s), cheap, easy to manipulate, and compatible with the flat stitching method that is common in a print house, making itself an ideal scheme for large‐scale production of 3D paper‐based microfluidics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号