首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Due to the unique size effects, nanomaterials in infrared absorption have attracted much attention for their strong absorption in the infrared region. To achieve the infrared multi‐band absorption, we propose to synthesize a core‐shell structure nanomaterial consisting of NaYF4:Yb3+, Er3+ core and a layer of SiO2 as shell. A series of NaYF4:Yb3+, Er3+ nanocrystals were synthesized through hydrothermal method by adjusting the ratio of citric acid(CA)‐to‐NaOH, and the effects of CA concentration, and NaOH concentration were studied in detail. NaYF4:Yb3+, Er3+@SiO2 nanoparticles were synthesized by sol‐gel method using TEOS as silica source. The results show that the core‐shell NaYF4:Yb3+, Er3+@SiO2 nanoparticles were successfully synthesized. Up‐conversion spectra of these nanoparticles were recorded with 980 nm laser excitation under room temperature. There are no changes of the emission centers of nanoparticles before or after silica coating, but the emission intensities of nanoparticles after silica coating are weakened. Furthermore, the property of infrared multi‐band absorption was tested through ultraviolet‐visible‐near infrared spectrophotometer and infrared absorption spectra. The results illustrate that the multi‐band infrared absorption nanomaterial was successfully synthesized.  相似文献   

2.
Orthogonal pre‐processing (orthogonal projection) of spectral data is a common approach to generate analyte‐specific information for use in multivariate calibration. The goal of this pre‐processing is to remove from each spectrum the respective sample interferent contributions (spectral interferences from overlap, scatter, noise, etc.). Two approaches to accomplish orthogonal pre‐processing are net analyte signal (NAS) and generalized least squares (GLS). Developed in this paper is the mathematical relationship between NAS and GLS. It is also realized that orthogonal NAS pre‐processing can remove too much analyte signal and that the degree of interferent correction can be regulated. Similar to GLS, the degree of correction is accomplished by using a regularization (tuning) parameter to form generalized NAS (GNAS). Also developed in this paper is an alternative to GNAS and GLS based on generalized Tikhonov regularization (GTR). The mathematical relationships between GTR, GNAS, and GLS are derived. A result is the ability to express the model vector as the sum of two contributions: the orthogonal NAS contribution and a non‐NAS contribution from the interferent components. Thus, rather than the usual situation of sequentially pre‐processing data by either GNAS or GLS followed by model building with the pre‐processed data, the methods of GTR, GNAS, and GLS are expressed as direct computations of model vectors allowing concurrent pre‐processing and model building to occur. Simultaneous pre‐processing and model forming are shown to be natural to the GTR process. Two near‐infrared spectroscopic data sets are studied to compare the theoretical relationships between GTR, GNAS, and GLS. One data set covers basic calibration, and the other data set is for calibration maintenance. Filter factor representation is key to developing the interprocess relationships. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The time and expense of calibration development limit the feasibility of NIR spectroscopy for many industrial applications, with a major portion of the costs being related to creation of a sufficient set of calibration samples. Net analyte signal (NAS) and generalized least squares (GLS) pre‐processing have been proposed in the literature as methods to simplify multivariate calibration by reducing the quantity of calibration samples by orthogonalizing or shrinking interference signals. Synthetic calibration has also been reported as a method to combine interference signals with pure component spectra to generate virtual calibration models, thereby reducing the number of real calibration samples required. The goals of this paper were to (1) compare theoretical and practical differences between NAS and GLS pre‐processing and (2) explore the potential of simplified NIR calibrations, both empirical and synthetic, constructed using optical coefficient‐based signal processing on predicting chemical compositions of pharmaceutical powder mixtures. A reduced calibration dataset including only one pharmaceutical powder mixture composition and pure component spectra was used for both empirical and synthetic calibrations. Absorption and reduced scattering coefficients, obtained from spatially‐resolved spectroscopy, were used herein as interference signals in NAS/GLS pre‐processing for both calibrations. As a result, NAS and GLS were shown to be equivalent in both theoretical and practical senses. After optical coefficient‐based signal processing, simplified calibrations, both empirical and synthetic, were demonstrated to have similar model performance as generic pre‐processing methods such as SNV and derivative, while requiring fewer principal components and achieving a lower prediction error. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A lamp‐based fluorescence detection (Flu) system for CE was extended with a wavelength‐resolved (WR) detector to allow recording of full protein emission spectra. WRFlu was achieved using a fluorescence cell that employs optical fibres to lead excitation light from a Xe‐Hg lamp to the capillary window and protein fluorescence emission to a spectrograph equipped with a CCD. A 280 nm band pass filter etc. together with a 300 nm short pass cut‐off filter was used for excitation. A capillary cartridge was modified to hold the detection cell in a commercial CE instrument enabling WRFlu in routine CE. The performance of the WRFlu detection was evaluated and optimised using lysozyme as model protein. Based on reference spectral data, a signal‐intensity adjustment was introduced to correct for transmission losses in the detector optics that occurred for lower protein emission wavelengths. CE‐WRFlu of lysozyme was performed using BGEs of 50 mM sodium phosphate (pH 6.5 or 3.0) and a charged‐polymer coated capillary. Using the 3‐D data set, signal averaging over time and emission‐wavelength intervals was carried out to improve the S/N of emission spectra and electropherograms. The detection limit for lysozyme was 21 nM, providing sufficient sensitivity to obtain spectral information on protein impurities.  相似文献   

5.
A method using the ring-oven technique for pre-concentration in filter paper discs and near infrared hyperspectral imaging is proposed to identify four detergent and dispersant additives, and to determine their concentration in gasoline. Different approaches were used to select the best image data processing in order to gather the relevant spectral information. This was attained by selecting the pixels of the region of interest (ROI), using a pre-calculated threshold value of the PCA scores arranged as histograms, to select the spectra set; summing up the selected spectra to achieve representativeness; and compensating for the superimposed filter paper spectral information, also supported by scores histograms for each individual sample. The best classification model was achieved using linear discriminant analysis and genetic algorithm (LDA/GA), whose correct classification rate in the external validation set was 92%. Previous classification of the type of additive present in the gasoline is necessary to define the PLS model required for its quantitative determination. Considering that two of the additives studied present high spectral similarity, a PLS regression model was constructed to predict their content in gasoline, while two additional models were used for the remaining additives. The results for the external validation of these regression models showed a mean percentage error of prediction varying from 5 to 15%.  相似文献   

6.
7.
To study dye‐sensitized solar cells (DSSCs) with core‐modified porphyrins as the sensitizing dyes, three porphyrins with an ethynyl benzoic acid as an anchoring group are prepared. The properties of free‐base regular porphyrin (N4), thiaporphyrin (N3S) and oxaporphyrin (N3O) were thoroughly studied by spectroscopic methods, DFT calculations, and photovoltaic measurements. Replacing one of the porphyrinic core nitrogen atoms by oxygen or sulfur considerably changes the absorption spectra. The Soret band of the N3O and N3S observed bathochromic shifts of 3‐9 nm while the Q band reaches 700 nm to the near‐infrared region. The overall conversion efficiencies of the DSSCs based on these porphyrins are in the order N4 (3.66%) ? N3S (0.22%) > N3O (0.01%). The time‐correlated single photon counting observed short fluorescence lifetimes for N3O adsorbed both on TiO2 and Al2O3 which explicates the poor efficiency of DSSC using N3O as the photosensitizer.  相似文献   

8.
This work proposes a new method for determination of the oxidative stability of edible oils at frying temperatures using near infrared emission spectroscopy (NIRES). The method is based on heating an oil sample at a fixed temperature, followed by the acquisition of the emission spectra with time using a home-made spectrometer with an acousto-optical tunable filter (AOTF) as monochromator. The induction time, related to the oxidative stability, is determined by means of the emission band at 2900 nm and its increase and broadening during the heating time. After the induction period, this band also provides information related to the oxidation rate of the sample. Twelve samples of edible oils, of different types and from different manufacturers, were analyzed for oxidative stability with mean repetitivity of 3.7%. The effects of nitrogen insertion, heating temperature and the presence of antioxidant compounds on the oxidative stability were evaluated.  相似文献   

9.
The detection, confirmation, and quantification of multiple illegal adulterants in health foods and herbal medicines by using a single analytical method are a challenge. This paper reports on a new strategy to meet this challenge by employing high‐performance liquid chromatography coupled with high‐resolution mass spectrometry and a mass spectral tree similarity filter technique. This analytical method can rapidly collect high‐resolution, high‐accuracy, optionally multistage mass data for compounds in samples. After a preliminary screening by retention time and high‐resolution mass spectral data, known illegal adulterants can be detected. The mass spectral tree similarity filter technique has been applied to rapidly confirm these adulterants and simultaneously discover unknown ones. By using full‐scan mass spectra as stem and data‐dependent subsequent stage mass spectra to form branches, mass spectrometry data from detected compounds are converted into mass spectral trees. The known or unknown illegal adulterants in the samples are confirmed or discovered based on the similarity between their mass spectral trees and those of the references in a library, and they are finally quantified against standard curves. This new strategy has been tested by using 50 samples, and the illegal adulterants were rapidly and effectively detected, confirmed and quantified.  相似文献   

10.
Cr3+‐doped SrGa12O19 is demonstrated to be a broadband near‐infrared (650–950 nm) long‐persistent phosphor whose luminescence can last for more than 2 h after ultraviolet irradiation is stopped. Detailed analysis of the photoluminescence and thermoluminescence spectra and of the persistent decay behavior of the Cr3+‐doped SrGa12O19 samples indicate that the persistent energy transfer from the SrGa12O19 host to the Cr3+ ions and the filling and release of electrons into and from the shallow and deep traps through the conduction band is responsible for the long‐persistent phosphorescence.  相似文献   

11.
The objective of this paper was to apply two‐dimensional (2D) near‐infrared (NIR) correlation spectroscopy to the discrimination of three species of Dendrobium. Generalized 2D‐NIR correlation spectroscopy was able to enhance spectral resolution, simplify the spectrum with overlapped bands and provide information about temperature‐induced spectral intensity variations that was hard to obtain from one‐dimensional NIR spectroscopy. The FT‐NIR spectra were measured over a temperature range of 30–140°C. The 2D synchronous and asynchronous spectra showed remarkable differences within the range of 5600–4750 cm−1 between different species of Dendrobium. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The α4 atropoisomer of a tetraaryl porphyrin and its PdII complex, both bearing four hydroxyquinolinyl chelating units pre‐organised on the same face of the porphyrin backbone, bind a NdIII centre thus affording either a mononuclear or a heterobinuclear anionic species, respectively. The near‐infrared emission of the lanthanide centred at 1064 nm is observed upon excitation of the Soret band at 425 nm. Sensitisation proceeds mainly from the singlet state of the porphyrin.  相似文献   

13.
The antibiotic agent clioquinol is well known for its drug design and coordinating ability towards metal ions. Copper(II) mixed‐ligand complexes of clioquinol with various uninegative bidentate ligands were prepared. The structure of the synthesized complexes was characterized using elemental analyses, infrared spectra, 1H‐NMR spectra, electronic spectra, magnetic measurements, FAB mass spectrum and thermo gravimetric analyses. The kinetic parameters such as order of reaction (n) and the energy of activation (Ea) are reported using the Freeman–Carroll method. The pre‐exponential factor (A), the activation entropy (ΔS#), the activation enthalpy (ΔH#) and the free energy of activation (ΔG#) were calculated. Complexes were also screened for their in vitro antibacterial activity against a range of Gram‐positive and Gram‐negative bacteria in order to set the precursors for anti‐tumourigenic agent. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Near infrared spectroscopy (NIRS) has been proved to be a powerful analytical tool in different fields. However, because of the low sensitivity in near infrared region, it is a significant challenge to detect trace analytes with normal NIRS technique. A novel enrichment technique called fluidized bed enrichment has been developed recently to improve sensitivity of NIRS which allows a large volume solution to pass through within a short time. In this paper, fluidized bed enrichment method was applied in the determination of trace dimethyl fumarate in milk. Macroporous styrene resin HZ-816 was used as adsorbent material, and 1?L solution of dimethyl fumarate was run to pass through the material for concentration. The milk sample was pretreated to remove interference matters such as protein, fat, and then passed through the material for enrichment; after that, diffuse reflection NIR spectra were measured for the analyte concentrated on the material directly without any elution process. The enrichment and spectral measurement procedures were easy to operate. NIR spectra in 900–1,700?nm were collected for dimethyl fumarate solutions in the concentration range of 0.506–5.060?μg/mL and then used for multivariate calibration with partial least squares (PLS) regression. Spectral pretreatment methods such as multiplicative scatter correction, first derivative, second derivative, and their combinations were carried out to select the optimal PLS model. Root mean square error of cross-validation calculated by leave-one-out cross-validation is 0.430?μg/mL with ten PLS factors. Ten samples in an independent test set were predicted by the model with the mean relative error of 5.33?%. From the results shown in this work, it can be concluded that the NIR technique coupled with on-line enrichment method can be expanded for the determination of trace analytes, and its applications in real liquid samples like milk and juice may also be feasible.  相似文献   

15.
Two Dy(III) complexes with benzoate derivative and 2,2′‐bipyridine ligands, [Dy(2,4‐DClBA)3bipy]2 and [Dy(o‐MOBA)3bipy]2·4H2O (2,4‐DClBA=2,4‐dichlorobenzoate; o‐MOBA=o‐methoxybenzoate; bipy=2,2′‐bipyridine), were prepared and characterized by elemental analysis, infrared spectra, ultraviolet spectra and thermogravimetry and differential thermogravimetry techniques. The thermal decomposition behavior of the two complexes under a static air atmosphere was discussed by thermogravimetry, differential thermogravimetry and infrared spectral techniques. The non‐isothermal kinetics were investigated by using a double equal‐double step method, a non‐linear isoconversional integral method and a Starink method. The mechanism functions of the first decomposition step for [Dy(2,4‐DClBA)3bipy]2 and the second decomposition step for [Dy(o‐MOBA)3bipy]2·4H2O were determined. Meanwhile, the thermodynamic parameters (ΔHne;, ΔGne; and ΔSne;) and kinetic parameters (activation energy E and the pre‐exponential factor A) for the two complexes were also calculated.  相似文献   

16.
Real‐time Fourier transform near‐infrared spectroscopy has been used to monitor monomer and water concentrations simultaneously during cationic vinyl ether photopolymerization. The use of near‐infrared peak area methods allows the water content to be conveniently and nondestructively determined in any monomer or polymer for which the water peak has previously been calibrated by gravimetric analysis. Although the shape of the absorption band due to absorbed water in a monomer changes with the quantity of water, the integrated intensity from about 5350 to 4900 cm?1 can be correlated directly to the water concentration, and this region is well removed from the vinyl‐based absorption at approximately 6190 cm?1. This approach provides a highly informative, dynamic technique for examining the influence of moisture on polymerization reactions. Significant differences have been observed in the effects of absorbed water on the cationic photopolymerization kinetics of vinyl ether monomers with or without an ? OH group. Along with the rapid consumption of water coupled to vinyl ether polymerization, acid‐catalyzed hydrolysis reactions have also been spectroscopically observed, giving rise to the formation of aldehyde groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1985–1998, 2004  相似文献   

17.
Water‐soluble electrically conductive polymer poly(3,4‐ethylenedioxythiophene) (PEDOT) was synthesized by the enzymatic‐catalyzed method using 3,4‐ethylenedioxythiophene (EDOT) as monomer, poly(styrenesulfonate) (PSS) as water‐soluble polyelectrolyte, horseradish peroxidase enzyme as catalyst, and hydrogen peroxide (H2O2) as oxidant. Fourier transform infrared spectra and UV–vis absorption spectra confirm the successful enzymatic‐catalyzed polymerization of PEDOT. Dynamic light scattering data confirm the formation of a stable PEDOT:PSS aqueous dispersion. The thermo gravimetric data show that the obtained PEDOT is stable over a fairly high range of temperatures. The atomic force microscopy height images show that the PEDOT:PSS aqueous dispersion can form excellent homogeneous and smooth films on various substrates by conventional solution processing techniques, which renders this PEDOT:PSS aqueous dispersion a very promising candidate for various application in electronic devices. This enzymatic polymerization is a new approach for the synthesis of optical and electrical active PEDOT polymer, which benefits simple setting, high yields, and environmental friendly route. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Significant efforts have been made to develop high‐efficiency organic light‐emitting diodes (OLEDs) employing thermally activated delayed fluorescence (TADF) emitters with blue, green, yellow, and orange–red colors. However, efficient TADF materials with colors ranging from red, to deep‐red, to near‐infrared (NIR) have been rarely reported owing to the difficulty in molecular design. Herein, we report the first NIR TADF molecule TPA‐DCPP (TPA=triphenylamine; DCPP=2,3‐dicyanopyrazino phenanthrene) which has a small singlet–triplet splitting (ΔEST) of 0.13 eV. Its nondoped OLED device exhibits a maximum external quantum efficiency (EQE) of 2.1 % with a Commission International de L′Éclairage (CIE) coordinate of (0.70, 0.29). Moreover, an extremely high EQE of nearly 10 % with an emission band at λ=668 nm has been achieved in the doped device, which is comparable to the most‐efficient deep‐red/NIR phosphorescent OLEDs with similar electroluminescent spectra.  相似文献   

19.
A diagnostic method for the cancer, based on investigation of infrared spectra of blood samples, has been developed. The two‐layer modified principal component feed forward back‐propagation artificial neural network (BP‐ANN) was used to classify the attenuated total reflectance‐Fourier transform infrared (ATR‐FTIR) spectra of blood samples obtained from healthy people and those with basal cell carcinoma (BCC). Results showed 98.33% of accuracy, in comparison with the current clinical methods. In the first step, 20 blood samples (10 normal and 10 cancer cases) were applied to construct the calibration model. Spectroscopic studies were performed in 900–1800 cm−1 spectral region with 3.85 cm−1 data space. In order to modify the capability of ANN in prediction of test samples, two different algorithms were applied. The obtained results confirmed the compatibility of the proposed network with the architecture of 20‐8‐2 (input‐hidden‐output) with the pattern model. It was concluded that analysis of blood samples by ATR‐FTIR spectroscopy and ANN chemometric technique would be a reliable approach for detection of BCC. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Application of organic coatings on aluminium alloys is commonplace for corrosion protection. The adhesion of coatings is of great importance to the final protection properties. It is therefore necessary to understand on a molecular level the mechanisms with which a coating is able to bond. In this paper, we explore the possibilities of combining model molecules for a poly(ethylene terephthalate) (PET) type coating, di‐methyl terephthalate (DMT), with differently pre‐treated samples of AA1050 and AA5182 alloys. Bonding is studied by means of Fourier‐transform infrared (FTIR) spectroscopy. Because the type of bonding gives a direction for adhesion of a coated system, we also test (macroscopically) the adhesion of PET coatings with a novel technique: asymmetrical double cantilever beam (ADCB). In this method, a thin knife is used as a wedge on the interface of the alloy and the polymer. The displacement of the crack front as measured from the knife's contact point with the coating is used as an input parameter to obtain the adhesion energy for various systems. We show that there is a relationship between the character of bonding of DMT molecules and adhesion energies of PET on both alloys after pre‐treatments in alkali and acid and boiling in water. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号